
UNIVERSITY EXAMINATIONS2010/2011 ACADEMIC YEARFOR THE DEGREE OF BACHELOR OF EDUCATIONSCIENCE
COURSE CODE:
COURSE TITLE:
STREAM:
DAY:TIME:
DATE:
13/04/2011

INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions. Question One carries 30marks while each of the other Two Questions carry 20marks.

QUESTION 1 (30 marks)

a) State what is meant by rectilinear propagation of light.
b) State three properties of real images
c) i) State Huygen's principle.
ii) Use Huygen's principle to derive the Snell's law of refraction.
d) i) Define what is meant by the refractive index of a medium.
ii) The refractive index for a ray of light traveling from glass to air is 0.67 . If the speed of light in air is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, calculate the speed of light in glass.
e) The diagram below shows a pin placed at the bottom of two transparent materials. The top medium is of refractive index 1.4 and the bottom is of refractive index 1.6. The thickness of the top medium is 12.5 cm and that of bottom is 7.5 cm .

Calculate the apparent position of the pin as seen from top.
f) Differentiate between the following.
i). Far point and near point of human eye
ii). Real and virtual image
g) i) What is lens aberration?
ii) State and explain the two types of lens aberration.
iii) State how each of the aberrations in (ii) can be reduced.

QUESTION 2 (20 marks)

a) i) State Fermat's principle.
ii) Use Fermat's principle to prove the law of reflection
b) A glass plate 3 mm thick of refractive index 1.5 is placed between a point source of light of wavelength 600 nm and a screen. The distance from the source to the screen is 3 cm . Calculate the number of waves produced; assume one wave is a single wavelength.
(6mks)
c) Light strikes a transparent material at angle of incidence of 60° and part of it is reflected while the other part is refracted. It is observed that the angle between the
reflected and refracted rays is 90°. Calculate the refractive index of the material.
(4mks)
d) Differentiate between hypermetropia and myopia and state how each can be corrected.
(4mks)

QUESTION 3 (20 marks)

a) State what is meant by critical angle of a medium.
(1mk)
b) The figure below shows a triangular prism with a ray of monochromatic light incident normal to one face and emerge on the other face as shown.

If $\theta=45^{0}$
i). Calculate the refractive index of the glass
ii). What would be the critical angle if the prism is immersed in water of refractive index 1.33
iii). State what is meant by monochromatic light?
b) i) A light ray falls on a square transparent material. What must be the refractive index of this material if the ray has to traverse through it as shown?

ii) State two conditions for the above ray to undergo total internal reflection.
(2mks)
c) An astronomical telescope has an objective lens of focal length 120 cm and an eye piece lens of focal length 5 cm . If the telescope is in normal adjustment, find,
i) the angular magnification (3mks)
ii) the length of the telescope. (2mks)

QUESTION 4 (20 marks)

a) i) What is refraction?
ii) Use Fermat's principle to prove the law of refraction
b) i) State one condition for a concave mirror to give a magnified image.
ii) A man has a concave shaving mirror whose focal length is 80 cm . How far should the mirror be held from his face in order to give an image two times magnified?
c) An object is placed 20 cm from a convex lens of focal length 15 cm . Another convex lens of focal length 25 cm is placed at a distance (d) from the first lens. If an image is formed 20 cm from the second lens, calculate
i). the distance (d)
(4mks)
ii). the final magnification of the image
d) State two characteristics of images formed by convex mirrors.

QUESTION 5 (20 marks)

a) State two differences between astronomical telescope and compound microscope other than their uses.
b) State two reasons why convex mirror is used as a driving mirror.
c) A convex lens of focal length 15 cm forms an image with a magnification of 3 . Find;
i). the object distance
ii). state the nature of image formed other than being enlarged.
d) i) Define angular magnification of an optical instrument.
ii) Derive the expression of angular magnification of a simple microscope. (6 mks)
e) Sketch a diagram to show how a compound microscope is used.

