SUPPLEMENTARY/SPECIAL EXAMINATIONS

2008/2009 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE
COURSE CODE: MATH 112
COURSE TITLE: GEOMETRY AND ELEMENTARY APPLIED

STREAM: Y1S1
DAY:
TUESDAY
TIME: $\quad 2.00-4.00$ P.M.
DATE: $\quad 17 / 03 / 2009$

Instructions:

Answer questions ONE and any other TWO questions.

Question One - (30mks)

(a) In a triangle $\mathrm{ABC}, O A=a, O B=b$ and $O C=c . \mathrm{M}$ is a point on AB such that $\mathrm{AM}: \mathrm{MB}=$ 2:3 and Q is a point on CM such that $\mathrm{CQ}: \mathrm{QM}=1: 1$. Express the position vector of Q in terms of a , $\underset{\sim}{b}$ and $\underset{\sim}{c}$. (4mks)
(b) A particle is acted upon by forces $\mathrm{F}_{1}=4 \underset{\sim}{i}+j-3 \underset{\sim}{\underset{\sim}{k}}$ and $\mathrm{F}_{2}=3 \underset{\sim}{i}+\underset{\sim}{j}-\underset{\sim}{k}$, thereby displacing it from the point $\mathrm{P}=i+2 j+3 k$ to $\mathrm{Q}=5 i+4 j+k$. Find the total work done.
(c) Show that $A \times B=-(B \times A)$
(d) Find the distance of the point $(25,5,7)$ from the plane $12 x+4 y+3 z=3$
(e) Find the modulus and principal value of the argument of the complex number $-4+3 \mathrm{i}$.
(f) Find the value of λ for which the matrix below is singular.

$$
\left(\begin{array}{cc}
\lambda-2 & 1 \\
2 & \\
& \lambda-3
\end{array}\right)
$$

(g) Find the condition necessary for the line $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ to touch the ellipse.

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y}{b^{2}}=1 \tag{4mks}
\end{equation*}
$$

Question Two (20mks)

(a) Find the area of a triangle whose vertices are $\mathrm{A}(3,0,-1), \mathrm{B}(4,2,5)$ and $\mathrm{C}(7,-2,4)$
(b) Find the angle between $\underset{\sim}{a}=3 \underset{\sim}{i}+j+2 \underset{\sim}{k}$ and $\underset{\sim}{b}=2 \underset{\sim}{i}-2 j+4 \underset{\sim}{k}$
(c) Use De Moivres theorem to show that $\tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}$
(d) Determine the vector and parametric equations of line passing through $\mathrm{A}(1,4,2)$ and $\mathrm{B}(3,-1,4)$

Question Three (20mks)

(a) Use the adjoint method to find the inverse of the matrix.

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & 1 \\
3 & 1 & -2
\end{array}\right)
$$

Hence solve the system of equations.

$$
\begin{aligned}
& x+2 y+3 z=6 \\
& 2 x+y+z=5 \\
& 3 x+y-2 z=1
\end{aligned}
$$

(b) Find the volume of a parallelepiped with adjacent sides OP, OQ and OR where $\mathrm{P}(1,1,0), \mathrm{Q}(1,0,1)$ and $\mathrm{R}(0,1,1)$
(c) Show that if $\underset{\sim}{A}=a_{1} \underset{\sim}{i}+a_{2} \underset{\sim}{j}+a_{3} \underset{\sim}{k}$ then $|\underset{\sim}{A}|=\sqrt{\left(a_{1}^{2}+a_{2}^{2}+a_{2}^{3}\right)}$

Question Four (20mks)

(a) Find the equation of the plane through the points $\mathrm{A}(2,-1,1), \mathrm{B}(3,2,-1)$ and $\mathrm{C}(-1,3,2)$
(b) A particle moves along the space curve $\underset{\sim}{r}=3 \mathrm{e}^{-2 t} \underset{\sim}{i}+4 \operatorname{Sin} 3 \mathrm{t} \underset{\sim}{j}+5 \operatorname{Cos} 3 \mathrm{t} \underset{\sim}{k}$. Find the magnitudes of its velocity and acceleration at $t=0$.
(c) Solve the following pair of equations by matrix method.

$$
\begin{aligned}
& 2 x+3 y=2 \\
& x-2 y=8
\end{aligned}
$$

(d) Find the distance of the point $(1,3)$ from the line $2 x+3 y-6=0$

Question Five (20mks)
(a) If $a=3 i-j-4 k, \quad b=-2 i+4 j-3 k$ and

$$
\underset{\sim}{c}=\underset{\sim}{i}+2 \underset{\sim}{j}+\underset{\sim}{k} \text { find }|2 \underset{\sim}{a}-\underset{\sim}{b}+\underset{\sim}{c}|
$$

(b) (i) Obtain the polar equation of the locus $x^{2}+y^{2}-2 y=0$
(ii) Obtain the Cartesian equation of the locus $2 \mathrm{r}^{2} \operatorname{Sin} 2 \theta=\mathrm{C}^{2}$
(c) Find the area of a parallelogram whose adjacent sides are $a=3 i+j-2 k$ and $\underset{\sim}{b}=\underset{\sim}{i}-3 j+4 \underset{\sim}{k}$
(d) Find in terms of a and m the value of c which makes the line $y=m x+c$ a tangent to the parabola $y^{2}=4 \mathrm{ax}$. Also obtain the coordinates of the point of contact.

