

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

COURSE CODE: MATH 112

COURSE TITLE: GEOMETRY AND ELEMENTARY APPLIED MATHEMATICS

STREAM:

DAY: FRIDAY
TIME:
9.00-11.00 A.M.

DATE:
13/08/2010

INSTRUCTIONS:

1.Question ONE is compulsory.
2. Attempt question ONE and any other TWO Questions

Question One [30 Marks]

a) Define the following terms
i) An ellipse
ii) A matrix
iii) A Complex number.

Find the equation of the line that is perpendicular to the line $5 x-y+8=0$ and passes through the point of intersection of the lines

$$
\begin{equation*}
2 x+7 y-3=0 \text { and } 3 x-2 y+8=0 \tag{5marks}
\end{equation*}
$$

b) Solve the following simultaneous equation by use matrix algebra.

$$
\begin{align*}
& 2 x-y=4 \\
& 4 x+y=5 \tag{3marks}
\end{align*}
$$

c) Determine the equation of a circle whose center is $(-1,1)$ and it is tangent to the line $x+2 y=4$ [4 marks]
d) Find the equation of an ellipse with eccentricity ${ }^{2} / 3$ given that the line $x=9$ is one of the directrix and the corresponding focus is at $(4,0)$.
[4 marks]
e) Reduce the equation $5 x^{2}-4 y^{2}+20 x+8 y=4$ to standard form. Identify the conic and give the coordinates if its foci and vertices.
f) Simplify completely the expression $(5-\sqrt{-9})(-1+\sqrt{-4})$
g) Eliminate the parameter and deduce the resulting conic.

$$
\begin{equation*}
x=a \cos t+h, y=b \sin t+k \tag{3marks}
\end{equation*}
$$

Question Two [20 Marks]

a) Find the equations of the lines through the point $(4,2)$ and at a perpendicular distance 2 units from the origin.
b) A point moves in a plane its position $P(x, y)$ at time t is given by $x=5 \cos t$ and $y=5 \sin t ; t \in \mathfrak{R}$. Describe the motion of the point.
c) Find the center, the foci, the length of major and minor axis of the ellipse.

$$
\begin{equation*}
16 x^{2}+25 y^{2}-64 x-150 y-111=0 \tag{6marks}
\end{equation*}
$$

d) A sound-receiving dish used at outdoor sporting events is constructed in the shape of a paraboloid with its focus 12.5 cm from the vertex. Determine the width of the dish if the depth is to be 5 cm .

Question Three [20 Marks]

a) Consider the lines $7 x+2 y=7$ and $2 x-3 y=27$. Find
i) The angle between the lines
ii) The distance from their point of intersection to the line $x=3 y+5$
[6 marks]
b) If the line $\mathrm{x}=2 \mathrm{y}$ meets the circle $x^{2}+y^{2}-8 x+6 y-15=0$ at the points P and Q find
i) The co-ordinates of P and Q
[4 marks]
ii) The equation of the circle passing through P, Q and the point $(1,1)$
[6 marks]
c) A cruise ship is traveling a course that is 100 miles from and parallel to a straight shoreline. The ship sends out distress signal, which is received by two coast guards stations A and B, located 200 miles apart. By measuring the difference in signal reception times, officials determine that the ship is 160 miles to B than A. Find the location of the ship.
[4 marks]

Question Four [20 Marks]

a) Find the six sixth roots of -1
[7 marks]
b) Find the values of a and b such that $(a+i b)^{2}=i$. Hence or otherwise solve the equation $z^{2}+2 z+1-i=0$ giving your answer in the form $p+i q$ where p and q are real numbers.
c) The equation $x^{4}-4 x^{3}+3 x^{2}+2 x-6=0$ has a root $1-i$. Find the other roots

Question Five [20 Marks]

a) Find the area of the triangle determined by $P(4,-3,1), Q(6,-4,7)$ and $R(1,2,2)$
[4 marks]
b) If α and β are the roots of $z^{2}-10 z+29=0$ find
i) $\alpha+\beta$
ii) $\alpha \beta$
[5 Marks]
c) A group operates a chain of shops in each of which are employed cashiers, attendants and cleaners as shown

Types of shop

	Large	Medium	Small
Cashiers	4	2	1
Attendants	12	6	3
Cleaners	6	4	2

The number of shops is

	Eastern Kenya	Western Kenya
Large	3	7
Medium	5	8
Small	12	4

How many of the various types of staff are employed in Eastern Kenya and Western Kenya?

