STREAM: SEMESTER TWO
DAY:
THURSDAY
TIME:
9.00-11.00 A.M.

DATE:
09/12/2010

INSTRUCTIONS:

$>$ Answer All questions in section A and any Two in section B

SECTION A (30 marks)

1. Distinguish between
a) A scalar and a vector.
[2 marks]
b) Cosine rule and sine rule of a triangle
2. Find an equation of the line through $P(5,-7)$ that is parallel to the line $6 x+3 y=4$
3. Without drawing the lines determine whether the following pair of lines are parallel or perpendicular
[4 marks]
i. $\quad 3 y+3=2 x$ and $2 y+3 x+8=0$
ii. $\quad 2 x-y=7$ and $y-2 x-3=0$
4. The points $A(-7,-7), B(8,-1), C(4,9)$ and D are the vertices of a parallelogram ABCD . Find the coordinates of D [4 marks]
5. Find the equation of a circle whose center is at the point $(2,1)$ and which passes through the point
6. Solve the equation $\tan \theta=2 \sin \theta$ for the values of $0 \leq \theta \leq 360^{\circ}$
7. In triangle $P Q R, p=5 \mathrm{~cm}, q=7 \mathrm{~cm}$ and $r=9 \mathrm{~cm}$. Find the area of the triangle.
8. The vectors $\underline{a}, \underline{b}$ and \underline{c} are defined as $\underline{a}=2 \hat{i}-\hat{j}, \underline{b}=3 \hat{i}+2 \hat{j}$ and $\underline{c}=-\hat{i}+3 \hat{j}$ determine $2 \underline{a}+3 \underline{b}-2 \underline{c}$
9. Determine the angle between the two vectors $\underline{a}=4 \hat{i}+3 \hat{j}$ and $\underline{b}=8 \hat{i}-6 \hat{j}$

SECTION B 40 Marks

10.

a) Find the coordinates of the $M(x, y)$ point which divides the line segment joining points $A(2,3) B(6,13)$ in the ratio1: 3 from A to B
[4 marks]
b) A sheep is tethered at the corner of a fenced square grazing plot each of side 20 cm . long, if the length of the rope is 14 cm , what is the of the of the plot not grazed by the sheep ?
[3 marks]
c) Suppose a major league baseball player has hit five home runs in the first 14 games and he keeps up this pace throughout the 162-game season
i) Express the number y of the home runs in terms of the number x of games played.
ii) How many home runs will the player hit for the season?
d) A line is drawn through the point $(2,3)$ making an angle of 45° with the positive direction of the x-axis and it meets the line $x=6$ at P. Find the
i. Distance of P from the origin
[5 marks]
ii. The equation of the line through P perpendicular to OP
[5 marks]
11.
a) Use the slope-intercept form to find the slope and the y-intercept of the given lines.

$$
\begin{align*}
& \text { i. } \quad 2 x=15-3 y \\
& \text { ii. } \quad 4 x-3 y=9 \tag{4marks}
\end{align*}
$$

b) Simplify the following without using tables..

$$
\begin{align*}
& \text { i. } \quad \sin 30^{\circ} \cos 30^{\circ} \\
& \text { ii. } \quad \tan 45^{\circ}+\cos 45^{\circ} \sin 45^{\circ} \tag{6Marks}
\end{align*}
$$

c) Given that $A(-3,1)$ and $B(5,4)$, find the equation of the perpendicular bisector of the line segment $A B$.
d) Find the height of a fig tree which is observed from two points A and B, 30 metres apart on the opposite sides of the tree with angles of elevation from the top of the tree as 37^{0} from A and 56^{0} from B
[5 marks]
12.
a) Show that the following two circles given by the equations $x^{2}+y^{2}-6 x-8 y+9=0$, $x^{2}+y^{2}=9$ are orthogonal.
b) Two parallel chords of a circle are each 8 cm long. If the radius of the circle is 5 cm long, what is the perpendicular distance between the chords?
c) AB is a chord of a circle centre O and radius 14 cm . If the angle AOB is 80°, calculate the perpendicular bisector of the chord AB to the minor arc AB .
[6 marks]
13.
a) Given the vectors find $\underline{a}=2 \hat{i}-\hat{j}+3 \hat{k}, \underline{b}=3 \hat{i}+2 \hat{j}-4 \hat{k}$ and $\underline{c}=-\hat{i}+3 \hat{j}-2 \hat{k}$ determine
i. $\underline{a}+\underline{b}$
ii. $\quad 2 \underline{a}+3 \underline{b}-2 \underline{c}$
[4 marks]
b) Suppose X lies on ST such that $\mathrm{SX}: \mathrm{XT}=2: 5$, express the position vector in terms of the vectors \underline{s} and \underline{t}
c) Determine the angle between the two vectors $\underline{a}=4 \hat{i}+3 \hat{j}$ and $\underline{b}=8 \hat{i}-6 \hat{j}$
d) If $\vec{a}=2 \hat{i}-3 \hat{j} ; \quad \vec{b}=4 \hat{i}-2 \hat{j}$; Find $|2 \vec{a}-3 \vec{b}|$

