KABARAK

UNIVERSITY EXAMINATIONS
 2010/2011 ACADEMIC YEAR
 FOR THE CERTIFICATE OF BRIDGING MATHEMATICS

COURSE CODE: BMATH 001

COURSE TITLE: GEOMETRY AND VECTORS

STREAM:
DAY:
FRIDAY
TIME:
9.00-11.00 A.M.

DATE:
03/12/2010

INSTRUCTIONS:

Answer All questions in section A and any Two in section B

SECTION A (30 marks)

1. Define the following terms
a) Gradient of a line.
b) abscissa
2. Find an equation of the line through $\mathrm{P}(5,-7)$ that is parallel to the line $6 x+3 y=4$
3. Suppose a major league baseball player has hit five home runs in the first 14 games and he keeps up this pace throughout the 162-game season
i. Express the number y of the home runs in terms of the number x of games played.
[1 mark]
ii. How many home runs will the player hit for the season? [2 marks]
4. Three of the points given lie on a circle whose centre is at the origin, State which points and the radius of the circle. $\mathrm{A}(-1,7), \mathrm{B}(5,-5), \mathrm{C}(-7,5)$ and $\mathrm{D}(7,-1)$
5. $\mathrm{O}(0,0)$ is the centre of the circle which passes through $\mathrm{A}(5,0)$.
i. Find the equation of the circle
ii. The point P on the circle has coordinates $(4, k)$ find k
6. Given that $90^{\circ}<\theta<270^{\circ}$, find θ when
a) $\tan \theta=\sqrt{3}$
[3 marks]
b) $\cos \theta=-\sqrt{3} / 2$
[3 marks]
7. Given that $\underline{a}=4 \hat{i}+3 \hat{j}+12 \hat{k}$ and $\underline{b}=8 \hat{i}-6 \hat{j}$ find
i. $\quad \underline{a} \bullet \underline{b}$
[3 Marks]
ii. The angle between the two vectors \underline{a} and \underline{b}

SECTION B 40 Marks

9.

a) Solve the equation $\tan \theta=2 \sin \theta$ for the values of $0 \leq \theta \leq 360^{\circ}$
[5 marks]
b) P, Q, R are the points $(5,-3),(-6,1),(1,8)$ respectively. hence
i. Show that triangle PQR is isosceles
[3 marks]
ii. Find the coordinates of the mid point of the base. [2 marks]
c) A line is drawn through the point $(2,3)$ making an angle of 45° with the positive direction of the x-axis and it meets the line $x=6$ at P. Find the
i. Distance of P from the origin

[4 marks]

ii. The equation of the line through P perpendicular to OP
10.
a) Use the slope-intercept form to find the slope and the y-intercept of the given lines.

$$
\begin{align*}
& \text { i. } 2 x=15-3 y \\
& \text { ii. } 4 x-3 y=9 \tag{4marks}
\end{align*}
$$

b) Simplify the following without using tables..

$$
\begin{equation*}
\frac{\sin ^{2} 315^{\circ}\left(1-\tan ^{2} 210\right)}{\left(1+\cos 120^{\circ}\right)\left(1+\tan ^{2} 330^{\circ}\right)} \tag{6Marks}
\end{equation*}
$$

c) In triangle $\mathrm{ABC} \mathrm{a}=5 \mathrm{~cm}, \mathrm{~b}=7 \mathrm{~cm}$ and $\mathrm{c}=9 \mathrm{~cm}$. Calculate angle B and the area of the triangle.
[5 marks]
d) Given $\mathrm{A}(-3,1)$ and $\mathrm{B}(5,4)$, find the equation of the perpendicular bisector of the line segment $A B$.
11.
a) If the line $\mathrm{x}=2 \mathrm{y}$ meets the circle $x^{2}+y^{2}-8 x+6 y-15=0$ at the points P and Q find
i) The co-ordinates of P and Q
[4 marks]
ii) The equation of the circle passing through P, Q and the point $(0,0)$
[5 marks]
b) AB is a chord of a circle centre O and radius 14 cm . If the angle AOB is 80°, calculate the perpendicular bisector of the chord AB to the minor arc AB .
[6 marks]
c) AB is a chord of a circle center O and radius 10 cm . If the perpendicular distance ON , from the center O to the chord is 6 cm , calculate;
i. The length of the chord AB .
ii. The area of the minor segment cut off by AB (Take $\pi=3.14$)
12.
a) Given the vectors find $\underline{a}=2 \hat{i}-\hat{j}+3 \hat{k}, \underline{b}=3 \hat{i}+2 \hat{j}-4 \hat{k}$ and $\underline{c}=-\hat{i}+3 \hat{j}-2 \hat{k}$ determine
i. $\underline{a}+\underline{b}$
ii. $\quad 2 \underline{a}+3 \underline{b}-2 \underline{c}$
b) Suppose X lies on ST such that $\mathrm{SX}: \mathrm{XT}=2: 5$, express the position vector in terms of the vectors \underline{s} and \underline{t}
c) Determine the angle between the two vectors $\underline{a}=4 \hat{i}+3 \hat{j}$ and $\underline{b}=8 \hat{i}-6 \hat{j}$
d) If $\vec{a}=2 \hat{i}-3 \hat{j} ; \quad \vec{b}=4 \hat{i}-2 \hat{j}$; Find $|2 \vec{a}-3 \vec{b}|$
[4 marks]

