

FOR THE CERTIFICATE OF PRE-UNIVERSITY MATHEMATICS

COURSE CODE: PMATH 021

COURSE TITLE: GEOMETRY AND VECTORS

STREAM: SEMESTER TWO

DAY: MONDAY
TIME:
9.00-11.00 A.M.

DATE:
09/08/2010

INSTRUCTIONS:

$>$ Answer All questions in section A and any Two in section B

SECTION A (30 marks)

1. Define the following terms
a) Gradient of a line.
[2 marks]
b) abscissa
2. Find an equation of the line through $\mathrm{P}(5,-7)$ that is parallel to the line $6 x+3 y$ $=4$ [2 marks]
3. A and B are the points $(-1,-6)$ and $(5,-8)$ respectively. Test whether any of the following 2 points lie on the perpendicular bisector of AB .
P (3,-4)
C (-7, 5)
[3 marks]
4. Three of the points given lie on a circle whose centre is at the origin, State which points and the radius of the circle. $\mathrm{A}(-1,7), \mathrm{B}(5,-5), \mathrm{C}(-7,5)$ and $\mathrm{D}(7,-1)$
5. $\mathrm{O}(0,0)$ is the centre of the circle which passes through $\mathrm{A}(5,0)$.
[4 marks]
i. Find the equation of the circle
ii. The point P on the circle has coordinates $(4, k)$ find k
6. Given that $90^{\circ}<\theta<270^{\circ}$, find θ when
a) $\tan \theta=\sqrt{3}$
[3 marks]
b) $\cos \theta=-\sqrt{3} / 2$
[3 marks]
7. Two boats leave the harbor at 9.00 A.M. Boat A sails north at $20 \mathrm{~km} / \mathrm{h}$. Boat B sails east at $15 \mathrm{Km} / \mathrm{h}$. How far apart are the two boats at noon?
8. In triangle $\mathrm{ABC}, \mathrm{c}=4.85 \mathrm{~cm}, \mathrm{~B}=32^{\circ}$ and $\mathrm{A}=76^{\circ}$. Find the length b [3 marks]

SECTION B 40 Marks

9.

a) Solve the equation $\tan \theta=2 \sin \theta$ for the values of $0 \leq \theta \leq 360^{\circ} \quad$ [5 marks]
b) $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are the points $(5,-3),(-6,1),(1,8)$ respectively.
i. Show that triangle PQR is isosceles [3 marks]
ii. Find the coordinates of the mid point of the base. [2 marks]
c) A line is drawn through the point $(2,3)$ making an angle of 45° with the positive direction of the x -axis and it meets the line $\mathrm{x}=6$ at P . Find the
i. Distance of P from the origin
ii. The equation of the line through P perpendicular to OP
10.
a) Use the slope-intercept form to find the slope and the y-intercept of the given lines.

$$
\begin{aligned}
\text { i. } & 2 x=15-3 y \\
\text { ii. } & 4 x-3 y=9
\end{aligned}
$$

b) Simplify the following without using tables.

$$
\begin{array}{ll}
\text { i. } & \sin 30^{\circ} \cos 30^{\circ} \\
\text { ii. } & \tan 45^{\circ}+\cos 45^{\circ} \sin 45^{\circ} \tag{6Marks}
\end{array}
$$

c) In triangle $\mathrm{ABC} \mathrm{a}=5 \mathrm{~cm}, \mathrm{~b}=7 \mathrm{~cm}$ and $\mathrm{c}=9 \mathrm{~cm}$. Calculate angle B and the area of the triangle.
d) Given $\mathrm{A}(-3,1)$ and $\mathrm{B}(5,4)$, find the equation of the perpendicular bisector of the line segment $A B$.
[5 marks]
11.
a) Find the equation of a circle that passes through $(0,2)(8,-2)$ and $(9,5)$. Verify that it also passes through the point $(2,6)$.
b) What is a tangent?
c) Find the equation of the tangent at the point $(2,6)$ above
12.
a) Given the vectors find $\underline{a}=2 \hat{i}-\hat{j}+3 \hat{k}, \underline{b}=3 \hat{i}+2 \hat{j}-4 \hat{k}$ and $\underline{c}=-\hat{i}+3 \hat{j}-2 \hat{k}$ determine
i. $\underline{a}+\underline{b}$
ii. $\quad 2 \underline{a}+3 \underline{b}-2 \underline{c}$
[4 marks]
b) Suppose X lies on ST such that $\mathrm{SX}: \mathrm{XT}=2: 5$, express the position vector in terms of the vectors \underline{s} and \underline{t}
c) Determine the angle between the two vectors $\underline{a}=4 \hat{i}+3 \hat{j}$ and $\underline{b}=8 \hat{i}-6 \hat{j}$ [6 marks]
d) If $\vec{a}=2 \hat{i}-3 \hat{j} ; \quad \vec{b}=4 \hat{i}-2 \hat{j}$; Find $|2 \vec{a}-3 \vec{b}|$
[4 marks]

