KABARAK

UNIVERSITY

SUPPLEMENTARY/SPECIAL EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

- COURSE CODE: PHYS 121
- **COURSE TITLE:** HEAT & THERMODYNAMICS
- STREAM: Y1S1
- DAY: THURSDAY
- TIME: 9.00 11.00 A.M.
- DATE: 19/03/2009

INSTRUCTIONS Answer **QUESTION 1** and **ANY OTHER TWO**

PLEASE TURN OVER

Question 1 (30 marks)

(a)	Define temperature	(2 marks)	
(b)	State any 5 physical properties of materials which change sufficiently temperature that can be used as the bases for thermometers.	with	
(c)	Explain why a thermometer needs to be very small.	(5 marks) (2 marks)	
(d)	Name two common reference points used for thermometer calibration	l	
(e)	What does 20°C correspond in the Fahrenheit scale?	(2 marks)	
(f)	State the basic principle used in employing a bimetallic strip as a swite	(3 marks) ch.	
(g)	By simple argument, show that the mean free path λ of a gas molecul	(2 marks) e can be	
-	expressed as $\frac{1}{n\pi r_0^2}$ where <i>n</i> is the number density of molecule and r_0	, the effective	
	molecular diameter	(5 mortes)	
(h)	Explain how the heat loss due to conduction, convection and radiation in a thermos flask	(5 marks) heat loss due to conduction, convection and radiation is minimized	
		(4 marks)	
(i)	State when a thermodynamic process is said to be(I) Reversible(II) Irreversible	(1 mark) (1 mark)	
(j)	Sketch the (P - T) phase diagram of water. Label the diagram.	(3 marks)	

Question 2 (20 marks)

(a) Explain an isochoric process, hence show that for an isochoric process, the first law of thermodynamics reduces to:

 $Q = \Delta U$

- (b) Give the four basic postulates of the Kinetic Theory of Gases used to model an Ideal Gas
- (c) Show that the molecular interpretation of temperature provides that the total energy of molecules of a gas is $E = \frac{3}{2}nRT$, where *n* is the number of molecules per unit volume, *R* is the universal gas constant and *T* is the temperature.

(10 mks)

(6 mks)

Question 3 (20 marks)

(a)	(i)	State the factors upon which the change in temperature of a body of	lepends. (3 marks)
	(ii)	Calculate the specific heat capacity of copper given that 204.75 J of the temperature of 15g of copper from 25° to 60° .	of energy raises
			(3 marks)
(b)		Sketch the density-temperature diagram near 0°C showing clearly anomalous behavior of water and explain the behavior.	the
			(6 marks)
(c)	(i) coeffic	Show that the thermal coefficient of linear expansion, α , is relate tient of volume expansion, γ by $\gamma \approx 3\alpha$.	d to the thermal
			(4 marks)
	(ii)	A glass flask of volume 200 cm ³ is just filled with mercury at 20° C mercury will overflow when the temperature of the system is raise	C. How much $100^{\circ}C^{2}$

(ii) A glass flask of volume 200 cm is just fined with inercury at 20 °C. How indefinercury will overflow when the temperature of the system is raised to 100° C? The coefficient of volume expansion of glass is 1.2×10^{-5} /C and of mercury is 18 x 10^{-5} /C.

(4 marks)

Question 4 (20 marks)

(a)	Sket	ch a well-labeled schematic flow diagram of a heat engine		
(b)	(i) S	State the second law of thermodynamics	(5 (1	marks) mk)
	(ii) S	State the condition for an engine to have 100% efficiency.	(1	mk)
	(iii)	Explain why a heat engine with 100% efficiency would violate thermodynamics	the	2 nd law of
		·	(2	mks)

(c) Draw a PV diagram representing a Carnot cycle, hence show that the ideal Carnot efficiency (e_c) can be expressed as:

$$e_{c} = 1 - \frac{Q_{cold}}{Q_{hot}} = 1 - \frac{T_{cold}}{T_{hot}}$$

where Q_{in} and Q_{out} are heat transfers at constant temperatures T_{hot} and T_{cold} respectively. (11 mks)