FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: PHYS 121

COURSE TITLE: HEAT AND THERMODYNAMICS

STREAM: SESSION I

DAY:
TIME:
2.00 - 4.00 P.M.

DATE:
13/08/2010

INSTRUCTIONS:

1. This paper contains four questions. Answer Question 1 and any other two questions.
2. Question 1 contains $\mathbf{4 0}$ marks and the rest contain 15 marks each.
3. Where needed use the constants; specific heat capacity of copper, $C_{C}=390 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$, specific capacity of aluminum $C_{A}=900 \mathrm{~J} / \mathrm{Kg}^{\circ} \mathrm{C}$ and specific heat of water $C_{w}=$ $4187 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$

PLEASE TURN OVER

QUESTION 1 (40 MARKS)

a.) Define
i.) Thermodynamic equilibrium (1 mark)
ii.) Isentropic process (1 mark)
b.) Give two properties of an ideal gas. (2 marks)
c.) A metal rod 2 m long is heated from $20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ If it has a diameter of 7 mm and coefficient of thermal conductivity is $385 \mathrm{Js}^{-1} \mathrm{~m}^{-1}\left(\mathrm{C}^{0}\right)^{-1}$. Calculate
i.) Temperature gradient giving its correct SI units (2 marks)
ii.) Determine the rate of heat flow in the metal rod (3 marks)
d.) How does thickness of a frying pan affect the way it cooks? (2 marks)
e.) Express the following temperatures in degrees Celsius and degrees Fahrenheit; $77.3 \mathrm{~K}, 300 \mathrm{~K}$ and 1356 K (6 marks)
f.) Two bodies A and B are placed near to each other. State condition necessary for heat to be transferred between them (2 marks)
g.) State the Zeroth law of thermodynamics (2 marks)
h.) Calculate the heat loss rate per square meter through a 150 mm thick concrete wall where the inner surface temperature is $21^{\circ} \mathrm{C}$ and the outer surface temperature is $1^{0} \mathrm{C}$. Assume the thermal conductivity of concrete is $1.5 \mathrm{~W} / \mathrm{mK}$ and give correct SI units (4 marks)
i.) When water is boiled under a pressure of 2 atmospheres the heat of vaporization is $2.2 \times 10^{6} \mathrm{~J} / \mathrm{kg}$ and boiling point is $120^{\circ} \mathrm{C}$. At this pressure one kg of water has a volume of $10^{-3} \mathrm{~m}^{3}$ and 1 kg of steam is $0.824 \mathrm{~m}^{3}$.

1. Compute the work done when 1 kg of steam is formed at this temperature (3 marks)
2. Calculate the increase in internal energy (2 marks)
j.) Give two types of commonly used thermometers (2 marks)
k.) i.) Define the specific heat capacity C_{V} (1 marks)
ii.) A metal of mass 70 g is heated from $18^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$ with heat amount of 2100 J . Determine the specific heat capacity of the metal (3 marks)
1.) Explain what you understand by the term adiabatic process (2 marks)

QUESTION TWO (15 MARKS)

a.) Define the term system (2 marks)
b.) A 175 g copper block at $90^{\circ} \mathrm{C}$ is dropped into an aluminum calorimeter cup initially at $20^{\circ} \mathrm{C}$. The calorimeter cup has a mass of 400 g and contains 430 g of water, also at $20^{\circ} \mathrm{C}$. What is the final temperature of the system? (5 marks)
c.) i.) Show that work done by expansion of a gas in a pump is given as

$$
\mathrm{W}=\mathrm{P}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)
$$

At constant pressure, where P is pressure and V is volume (4 marks)
ii.) A cylinder piston at $0.2 \mathrm{~m}^{3}$ of air at $5.0 \times 10^{3} \mathrm{~Pa}$ and $70^{\circ} \mathrm{C}$. The air expands to $0.6 \mathrm{~m}^{3}$ at a constant temperature. Determine the work done in this process. (4 marks)

QUESTION THREE (15 MARKS)

a.) State three state coordinates used to determine temperature scale (3 marks)
b.) In an experiment to determine the specific heat of some metal a student weighed the following and recorded her data results as shown below;

Weight of calorimeter $=36 \mathrm{~g}$
Weight of calorimeter + water $=70 \mathrm{~g}$
Weight of calorimeter + water + iron $=80 \mathrm{~g}$
The initial temperature of water was $22^{\circ} \mathrm{C}$. The iron was heated in a test tube with water till water boiled at $98^{\circ} \mathrm{C}$. The iron was then quickly transferred to calorimeter and stirred. The temperature then changed to $34^{\circ} \mathrm{C}$. Calculate the specific heat capacity of the metal given that specific heat capacity for calorimeter is $800 \mathrm{~J} / \mathrm{kgK}$ and that of water is $4200 \mathrm{Jkg}^{-}$ ${ }^{1} \mathrm{~K}^{-1}$. Assume there are no heat losses. (7 marks)
c.) State the kinetic theory of gases (2 marks)
d.) Give three factors that affect condition (3 marks)

QUESTION FOUR (15 MARKS)

a.) With a well labeled diagram show how a gas thermometer operates (5 marks)
b.) Give two reasons why the thermometer in (a) above is not commonly used (2 marks)
c.) Explain why ice is less dense than water (3 marks)
d.) Calculate the specific heat capacity of copper given that 204.75 J of energy raises the temperature of 15 g of copper from $25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (3 marks)
e.) State when a thermodynamic system is said to
i.) Reversible (1 mark)
ii.) Irreversible (1 mark)

