KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: PHYS 121

COURSE TITLE: HEAT AND THERMODYNAMICS

- STREAM: SESSION I
- DAY: FRIDAY
- TIME: 2.00 4.00 P.M.
- DATE: 13/08/2010

INSTRUCTIONS:

- 1. This paper contains four questions. Answer Question 1 and any other two questions.
- 2. Question 1 contains 40 marks and the rest contain 15 marks each.
- 3. Where needed use the constants; specific heat capacity of copper, $C_C = 390J/kg^0C$, specific capacity of aluminum $C_A = 900J/Kg^0C$ and specific heat of water $C_w = 4187J/kg^0C$

PLEASE TURN OVER

QUESTION 1 (40 MARKS)

a.) Define

- i.) Thermodynamic equilibrium (1 mark)
- ii.) Isentropic process (1 mark)
- b.) Give two properties of an ideal gas. (2 marks)
- c.) A metal rod 2m long is heated from 20° C to 60° C If it has a diameter of 7mm and coefficient of thermal conductivity is 385 Js⁻¹m⁻¹(C⁰)⁻¹. Calculate
 - i.) Temperature gradient giving its correct SI units (2 marks)
 - ii.) Determine the rate of heat flow in the metal rod (3 marks)
- d.) How does thickness of a frying pan affect the way it cooks? (2 marks)
- e.) Express the following temperatures in degrees Celsius and degrees Fahrenheit; 77.3K, 300K and 1356K (6 marks)
- f.) Two bodies A and B are placed near to each other. State condition necessary for heat to be transferred between them (2 marks)
- g.) State the Zeroth law of thermodynamics (2 marks)
- h.) Calculate the heat loss rate per square meter through a 150mm thick concrete wall where the inner surface temperature is 21^{0} C and the outer surface temperature is -1^{0} C. Assume the thermal conductivity of concrete is 1.5 W/mK and give correct SI units (4 marks)
- i.) When water is boiled under a pressure of 2 atmospheres the heat of vaporization is 2.2×10^6 J/kg and boiling point is 120^{0} C. At this pressure one kg of water has a volume of 10^{-3} m³ and 1 kg of steam is 0.824m³.
 - 1. Compute the work done when 1 kg of steam is formed at this temperature (3 marks)
 - 2. Calculate the increase in internal energy (2 marks)
- j.) Give two types of commonly used thermometers (2 marks)
- k.) i.) Define the specific heat capacity $C_V (1 \text{ marks})$ ii.) A metal of mass 70g is heated from 18^{0} C to 90^{0} C with heat amount of 2100J. Determine the specific heat capacity of the metal (3 marks)
- l.) Explain what you understand by the term adiabatic process (2 marks)

QUESTION TWO (15 MARKS)

- a.) Define the term system (2 marks)
- b.) A 175g copper block at 90°C is dropped into an aluminum calorimeter cup initially at 20°C. The calorimeter cup has a mass of 400g and contains 430g of water, also at 20°C. What is the final temperature of the system? (5 marks)
- c.) i.) Show that work done by expansion of a gas in a pump is given as $W = P(V_2 - V_1)$

At constant pressure, where P is pressure and V is volume (4 marks)

ii.) A cylinder piston at 0.2m^3 of air at $5.0 \times 10^3 \text{Pa}$ and 70^0C . The air expands to 0.6m^3 at a constant temperature. Determine the work done in this process. (4 marks)

QUESTION THREE (15 MARKS)

- a.) State three state coordinates used to determine temperature scale (3 marks)
- b.) In an experiment to determine the specific heat of some metal a student weighed the
 - following and recorded her data results as shown below;

Weight of calorimeter = 36g

Weight of calorimeter + water = 70g

Weight of calorimeter + water + iron = 80g

The initial temperature of water was 22° C. The iron was heated in a test tube with water till water boiled at 98°C. The iron was then quickly transferred to calorimeter and stirred. The temperature then changed to 34° C. Calculate the specific heat capacity of the metal given that specific heat capacity for calorimeter is 800J/kgK and that of water is 4200Jkg⁻¹K⁻¹. Assume there are no heat losses. (7 marks)

- c.) State the kinetic theory of gases (2 marks)
- d.) Give three factors that affect condition (3 marks)

QUESTION FOUR (15 MARKS)

- a.) With a well labeled diagram show how a gas thermometer operates (5 marks)
- b.) Give two reasons why the thermometer in (a) above is not commonly used (2 marks)
- c.) Explain why ice is less dense than water (3 marks)
- d.) Calculate the specific heat capacity of copper given that 204.75J of energy raises the temperature of 15g of copper from 25° C to 60° C (3 marks)
- e.) State when a thermodynamic system is said to
 - i.) Reversible (1 mark)
 - ii.) Irreversible (1 mark)