KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMMERCE

COURSE CODE: FNCE 120:

COURSE TITLE: MANAGEMENT MATHEMATICS I

STREAM: Y1S2

DAY: THURSDAY

TIME: 11.00-1.00 P.M.

DATE: 18/12/2008

INSTRUCTIONS:

i. Answer Question <u>One</u> and any <u>Other Two</u>

ii. All workings leading to answers must be clearly shown

PLEASE TURN OVER

QUESTION ONE: (40 Marks)

- a) From a survey of 100 customers, a marketing research company found that out of that 75 customers purchased stereos, 45 purchased cars and 35 purchased cars and stereos.
 - i. How many of the customers purchased either a car or stereo?
 - ii. How many students did not purchase a car or stereo? (4Mks)
- b) If the population in Kenya was around 33 Million people in 2007 and if the population continues to grow at 2%, what will be the population in 2015? (4Mks)
- c) The revenue from the sale of x units at a home supply outlet is given by R + 0.21x. The profit from the sale of x units is given by P = 0.84x 1.5

i.	Find the cost equation	(2Mks)
ii.	What is the cost of producing 7 units	(1Mk)
iii.	What is the break-even point?	(2Mks)

- d) Solve
 - i. $x^2 3x = 5$ ii. $3x + 4 \le 12$ (4Mks)

e) Suppose that the Price and Demand for an item are related by $P = 150 - 6Q^2$. The Supply and Price are related by $P = 10Q^2 + 2Q$. Find the equilibrium demand and price.(3Mks)

f) The weekly demand function for a particular product is

Q = f(p) = 30,000 - 25p.

- i. Determine the quadratic Total Revenue function where Revenue is a function of p. (2Mks)
 ii. At what price will Total profit be maximized? (3Mks)
- g) Give that U ={x |x is a positive integer less than 20}, A = {5, 10, 15}, B = {2, 4, 8, 10}, C = {1, 5, 9, 15, 17}

Find

i.	A n B	(1 M k)
ii.	A'n B'	(2Mks)
iii.	(A n B n C)'	(2Mks)
iv.	A' u C'	(2 Mk s)

h) A sales lady's monthly earnings comprise of a fixed and a variable component which is dependent on the number of handkerchiefs sold. She finds that when she sells 300 pieces

on a given month, she earns kshs, 60, 000, whereas when she double her sales her salary increases by Kshs. 10, 000. Determine the monthly fixed earnings; and what will be her earnings if she sells 200 pieces. (8 Marks)

QUESTION TWO (20 Marks)

a) Given the exponent decline in value as $V_t = V_0 e^{-rt}$. A company purchased equipment in January

2000 at Kshs. 150, 000 and expected to depreciate exponentially at 10% per year.

- i. What will be the expected value of the equipment at the end of 2008 and 2012? (4 Marks)
- ii. The company has a policy to dispose their equipment after 10 years. What will be the disposal value of this equipment? (4 Marks)
- b) Determine $\int_{1}^{4} (8x^{3} + 6x^{2} 10x + 5)dx$ (3 Mks)
- c) Determine the linear function which passes through the following points; (2, 5) and (5, 17).

(2 Marks)

d) The Total Cost and Total Revenue functions for a product are

C (x) =
$$500 + 100q + 0.5 q^2$$

R (x) = $500q$

- a) Determine the profit maximizing level output
- b) What is the maximum profit? (7Mks)

QUESTION THREE (20 Marks)

a) Ethiopia has a population of around 52 million people and it is estimated that the population will double in 2 years. If the population growth continues at the same rate, what will be the population in

- ii. 30 yrs (4**Mks**)
- b) The demand for the product of a firm varies with price that the firm charges for the product. The firm estimates that annual total Revenue (R) is a function of the price p

 $R = f(p) = -50 p^2 + 500p.$

i.	Determine	the	price	which	should	be	charged	in	order	to	maximize	Total
R	evenue.										(3Mks)	

ii.	What is the maximum value of total revenue?	(2 Mks)

- c) Highlight the five assumptions of break-Even Analysis. (5Marks).
- d) A factory manufactures two types of heavy duty machines in quantities x and y. the joint cost function is given by: $C = x^2 + 2y^2 - xy$. How many machines of each type should be produced if they have to be a total of 8 and what is the associated minimum cost? (6 Marks)

QUESTION FOUR (20 Marks)

a) An epidemic is spreading through a large Western town. Health officials estimate that the number of persons who will be afflicted by the disease is a function of time since the disease was first detected. Specifically the function is $n = f(t) = 300t^3 - 20t^2$ where n is the number of people infected and $0 \le t \le 60$ measured in days.

i. How many people are expected to have caught the disease after 10 days and 30 days

(4Mks)

ii. What is the average rate the disease is expected to spread between t = 10 and t = 30?

(3Mks)

b) A national manufacturer estimates that the number of units it sells each year is a function of its expenditure on radio and TV advertising. The function is $Z = 50,000x + 40,000y - 10x^2 - 20y^2 - 10xy$. Find the values of x and y to be spent on advertising in order to maximize sells. (6Mks)

c) A company sells a product for Kshs. 150 per unit. Raw materials costs are Kshs 40 per unit, labour costs are Kshs. 55 per unit; Shipping costs are Kshs. 15 per unit and annual fixed costs are Kshs. 200,000.

- a. Determine the profit function (3Mks)
- b. How many units must be sold in order to earn an annual profit of Kshs. 750,000?

(4Mks)