KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS 2010/2011 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF SCIENCE IN TELECOMMUNICATIONS COURSE CODE: TLCM 313 COURSE TITLE: MATERIALS & TECHNOLOGIES

- STREAM: Y3S1
- DAY: FRIDAY
- TIME: 9.00 12.00 P.M.
- DATE: 18/03/2011

INSTRUCTIONS:

- Answer question 1 and any other THREE
- Use a graph paper for question 2

PLEASE TURN OVER

Question 1 (20 marks

a)	Define material science (1/2 mark)									
b)	Distin	Distinguish between atomic mass and atomic weight of an element (1 marks)								
c)	State	the purpose of conduction electrons in atoms	(½ mark)							
d)	Expla	in the mechanisms responsible for thermal conductivity	(1 mark)							
e)	i)	(1 mark)								
	ii)	Explain why the properties of polycrystalline materials are isotropic.	e most often (1 mark)							
f)		the electron configurations for the following ions: Sn^{4+} , Se^{2-} <i>dic table in Appendix 1</i>).	(you may refer to (¹ /2, ¹ /2 mark)							
g)	With	reference to materials, explain the term "stone age".	(1 mark)							
h)	Explain 4 properties of materials commonly investigated when studying materials									
j)	Explain 4 types of defects in solids (2 marks) (2 marks)									
k)	Illustrate graphically concentration profile resulting from inter-diffusion in a two specie system (Cu/Ni). (1 mark)									
l)	i)	Explain any two types of point defect	(2 marks)							
	ii Explain any two cases where defects are introduced to improve material properties. (2 marks)									
m)	Show that Ohm's law can be rewritten as									
		$\mathbf{J} = \boldsymbol{\sigma} \mathbf{E}$								
	where	e, J is the current density, σ electrical conductivity and E the								
n)	(2 marks) Below is the data for silicon at 300 K. Calculate carrier concentration of Si at the said temperature. (Take: electron charge = 1.6×10^{-19} C). (2 marks)									

Material	Band Gap (eV)	Electrical Conductivity $[(\Omega \cdot m)^{-1}]$	Electron Mobility (m ² /V·s)	Hole Mobility (m ² /V·s)	
		Elemen	tal		
Si	1.11	$4 imes 10^{-4}$	0.14	0.05	

Question 2 (10 marks)

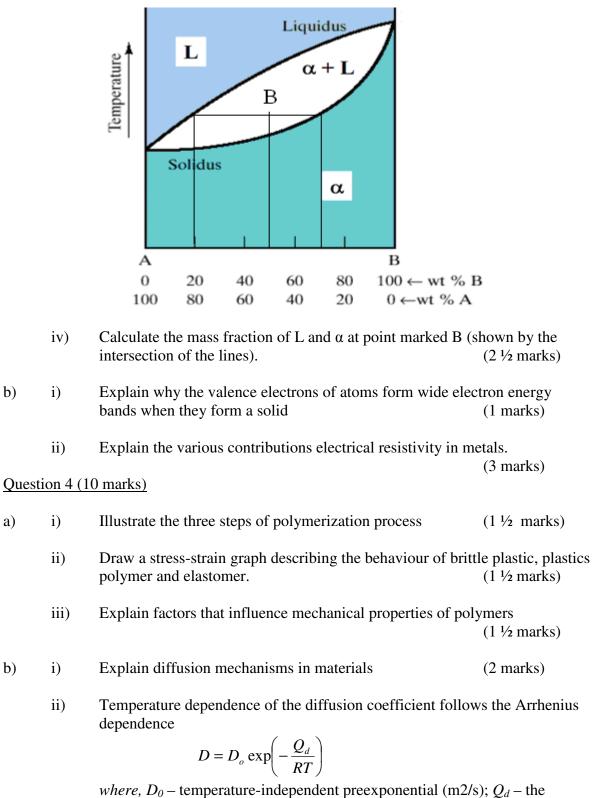
Define a)

i)	Engineering stress	(½ mark)
ii)	Engineering strain	(½ mark)

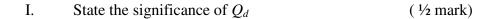
- Use diagrams to illustrate 4 different loadings and the resulting strain. (2 marks) b)
- c) A specimen of magnesium having a rectangular cross-section of dimensions 3.2 mm x 19.1 mm is deformed in tension. Using the load-elongation data tabulated as follows, answer parts a-f

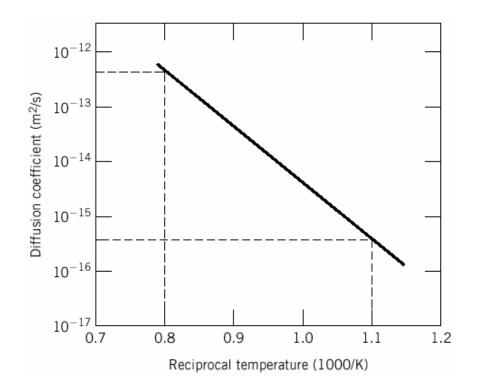
Load (N)	Length (mm)
0	63.5
1380	63.53
2780	63.56
5630	63.62
7430	63.7
8140	63.75
9870	64.14
12850	65.41
14100	66.68
14340	67.95
13830	69.22
12500	70.49

• \	D11 1	•	• • •	
1)	Plot the data as enginee	ring stress versus	engineering strain	(3 marks)
1)	i lot the data as enginee	ing buebb verbub	ongineering strain	


- ii) Compute the modulus of elasticity
- Determine the yield strength at a strain offset of 0.002 iii) (2 mark)
- Determine the tensile strength of this alloy (1 mark) iv)

Question 3 (10 marks)


α).


a)	i)	Define a phase diagram	(½ mark)
	ii)	State the information that can be determined from a tempe component phase diagram.	erature – (1 ½ marks)
	iii)	For the diagram below, explain the three phase regions sho α).	own (α, L and L+ $(1 \frac{1}{2} marks)$

(1 mark)

where, D_0 – temperature-independent preexponential (m2/s); Q_d – the activation energy for diffusion (J/mol or eV/atom); R – the gas constant (8.31 J/mol-K or 8.62×10-5 eV/atom-K); T – absolute temperature (K).

II. Use the plotted data below to determine Q_d (3 marks)

Question 5 (10 marks)

a)	with reference to crystal structures, define								
	 i) Coordination number ii) Unit cell iii) Atomic packing factor (APF) 	(½ mark) (½ mark) (½ mark)							
b)	Compare FCC and BCC crystal structures	(3 marks)							
c)	Show that the APF for BCC crystal structure is 0.68	$(2 \frac{1}{2} \text{ marks})$							

- d) i) Define **atomic mass unit** (amu). (½ mark)
 - ii) Some hypothetical metal has a simple cubic crystal structure. If its atomic weight is 74.5 grams/mol and its atomic radius is 0.145 nanometres, calculate its density. (*take 1 amu = 1.66 x 10⁻²⁷kg*) (2¹/₂ marks)

Appendix 1

IA																	0
1																	2
н	IIA	_										IIIA	IVA	VA	VIA	VIIA	He
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
11	12							1/111				13	14	15	16	17	18
Na	Mg	IIIB	IVB	VB	VIB	VIIB		VIII		IB	IIB	AI	Si	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
55	56	Rare	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	earth series	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	Acti-	104	105	106	107	108	109	110								
Fr	Ra	nide series	Rf	Db	Sg	Bh	Hs	Mt	Ds								