

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

COURSE CODE: ECON 121

COURSE TITLE: MATHEMATICS FOR ECONOMISTS I

STREAM: Y1S2

DAY: THURSDAY

TIME: 8.30 – 10.30 A.M.

DATE: 7/8/2008

INSTRUCTIONS:

1. Answer **QUESTION ONE** and any other **TWO** questions.

PLEASE TURN OVER

QUESTION ONE

(a) Given the sets: $A = \{1,3,5,7\}$ $B = \{1,2,3,4,5,6,7,8,9,10\}$ $C = \{2,4,6,8\}$

Find:

- (i) $A \cap B$ (1mk)
- (ii) AYC (1mk)

(iii) If in (a) above u (universal set) =
$$\left\{\frac{x}{x} \text{ is a positive integer }\right\}$$

Find A \cap A' (3mks)

- (b) Solve the following inequalities:
 - (i) $-2x + 1 \le x \le 6 x$ (2mks)

(ii)
$$|x-4| > 6$$
 (2mks)

(c) The demand for the product of a firm varies with the price that the firm charges for the product. The firm estimates that annual total revenue (R) is a function of the price (P) specifically,

$$R = f(p) = -50P^2 + 500p$$

- (i) Determine the price which should be charged in order to maximize total revenue? (5mks)
- (ii) What is the maximum value of annual total revenue? (5mks)
- (d) The total cost of producing q units of a certain product is described by the function.

 $C = 100,000 + 1500q + 0.2q^2$

Where C is the total cost stated in shillings; Determine the number of units of q that should be produced in order to minimize the average cost per unit.

(6mks)

(e) (i) Without using tables show that: $\frac{1}{2}\log\frac{25}{9} - \log\frac{15}{4} + \frac{2}{3}\log\frac{27}{8} = 0$ (3mks)

(ii) Show that
$$\log_a b = \frac{1}{\log_b a}$$
 (3mks)

QUESTION TWO

A consumer's utility function is given by $U = q_1 q_2$ where q_1 and q_2 are the quantities of the two commodities consumed. If the price of q_1 is Shs.6 and that of q_2 is Shs.3 and the budget is Shs60,

- (i) Write out a constrained utility maximization problem out of the information given.
- (ii) What is the corresponding augmented objective function?
- (iii) Find the levels of q_1 and q_2 that will satisfy the first order condition for maximum
- (iii) Compute the optimum value of U

(20mks)

QUESTION THREE

The demand and total cost function for a firm are given by;

P = 7 -
$$\frac{2}{5}Q$$

TC = $\frac{4}{7}Q^3 - \frac{3}{4}Q^2 + 7Q + 5$

Find:

- (i) The level of Q and P that will maximize profits.
- (ii) The level of Q that will maximize TR
- (iii) The level of Q that will minimize AVC
- (iv) The level of Q that will minimize MC
- (v) The minimum AVC and MC

(20mks)

QUESTION FOUR

(a) Consider the following two commodity market model:

$$\begin{array}{l} Q_{d1} = 8 - 2P_1 + P_2 \\ Q_{s1} = -5 + 3P_1 \\ Q_{d2} = 16 + P_1 - P_2 \\ Q_{s2} = -1 + 2P_2 \end{array}$$

$$\begin{aligned} \mathbf{Q}_{d1} &= \mathbf{Q}_{s1} \\ \mathbf{Q}_{d2} &= \mathbf{Q}_{s2} \end{aligned}$$

Determine by Cramer's rule:

	(i)	The value of equilibrium prices	(3mks)	
	(ii)	The value of equilibrium quantities	(3mks)	
(b)	Consi	Consider the following national income model for a closed economy:		
	Where	$\begin{split} Y &= C + I_0 + G_0 \\ C &= c_0 + c_1 Y \\ e: \\ Y \text{ and } C \text{ are endogenous variables, } I_0 \text{ and } G_0 \text{ are the exogenous variables, } \\ and C_0 \text{ and } C_1 \text{ are the parameters.} \end{split}$	riables	
	Requ	ired: Determine by Cramer's rule the equilibrium \overline{Y} and \overline{C}	(5mks)	
(c)	Solve the following equations by matrix inverse method			
		$\begin{array}{l} x_1 + 2x_2 + 3x_3 = 3 \\ 2x_1 + 4x_2 + 5x_3 = 4 \\ 3x_1 + 5x_2 + 6x_3 = 8 \end{array}$	(9mks)	
QUESTION FIVE				
(a)	Find t	he critical value of z given		
		Z = x + 2xy + y Subject to: $x + y - 4 = 0$	(6mks)	
(b)	Deter	mine $\frac{dy}{dx}$ given that		
		$Y = (2x^3 + x^2 - 3x + 18)^5$	(4mks)	
(c)	Find t	he following:		

Find the following: (i) $\int -\frac{1}{4}x^{-3} dx$ (5mks)

(ii)
$$\int (x^{3/4} + \frac{3}{7}x^{-1/2} + x^5)dx$$
 (5mks)