KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER

SCIENCE

COURSE CODE: PHYS 110

- COURSE TITLE: MECHANICS
- STREAM: Y1S1
- DAY: MONDAY
- TIME: 9.00 11.00 A.M.
- DATE: 07/12/2009

INSTRUCTIONS: Answer question ONE and any other two.

You may need the following constants:

 $\varepsilon_0 = 8.85 x 10^{12} F/m$; $\mu_0 = 4\pi x 10^{-7} Tm/A$; $h = 6.626 x 10^{-34}$; $leV = 1.6 x 10^{-19} J$; electron charg $e = 1.6 x 10^{-19} C$, electron mass = $9.11 x 10^{-31} kg$

PLEASE TURN OVER

Question ONE (30 marks)

(a)	(i)	Define electric current. Give its SI units	(3 marks)			
	(ii)	State how electrons can be made to move in a conductor.	(1 marks)			
(b)	Explain why if temperature in a conductor is increased, resistance increases.					
			(3 marks)			
(c)	Show that motion of a charged particle in a magnetic field is a circle, hence find					
	the radius of motion of an electron moving in a magnetic field of 10 T at a					
	veloc	tity of 3×10^5 m/s.	(4 mks)			
(d)	(i)	Define electric potential	(2 marks)			
	(ii) Calculate the electric potential due to a 4 uC charge at a point					
			(3 marks)			
(e)	Illustrate the construction of the following types of capacitors					
	(i)	Aluminum foil	(3 marks)			
	(ii)	Mica	(3 marks)			
(f)	Calculate the magnetic field of a long straight conductor carrying a current of 10					
	A at	(3 marks)				
(g)	State why a voltmeter is designed to have a very high resistance (1 ma					
(h)	Given two components of magnetic field of magnitude 0.5 Tesla each, one					
	pointing north - east and the other pointing eastwards, determine the magnitude					
	and c	(4 marks)				

Question TWO (20 marks)

(a) (i) State Ohm's law (2 marks)
(ii) For the figure below, identify 3 loops and apply Kirchoff's rules to formulate the voltage equations for the loops, hence determine the current flowing in each resistor. (7 marks)

(b)	(i)	Defi	ne capacitance	e. Give its SI units.	(2 marks)
	(ii)	You are provided with $2\mu F$, $3\mu F$ and $5\mu F$ capacitors. Show			
		math	ematically an	d diagrammatically how the	capacitors can be combined
		to gi	ve		
		I.	10µF		(3 marks)
		II.	2.5µF		(3marks)

III. $1.6\mu F$ (3 marks)

Question THREE (20 marks)

- (a) (i) Define a dipole (1 mark) (ii) Show that the electric field for a dipole can be expressed as $E = \frac{p}{4\pi\epsilon_0 r^3}$ where p is the dipole moment (7 marks)
- (b) The figure below shows a metal plate of thickness *a* inserted between capacitor plates. The charge, electric field and the plate separation are marked in the figure. Show that the capacitance is given by:

$$C = \frac{\varepsilon_0 A}{d-a}$$
, where A is the area of each plate.

(7 marks)

- (c) A conducting hollow sphere of radius 2 mm carries a charge of $2\mu F$. Calculate the Electric field
 - (i)At the centre of the sphere(2 marks)(ii)At the surface of the sphere.(3 marks)

Question FOUR (20 marks)

(a)	Explain the following types of magnetism					
	(i)	Diamagnetism	(2 marks)			
	(ii)	Ferromagnetism	(2 marks)			
	(iii)	Paramagnetism	(2 marks)			
(b)	Explain the difference between the magnetic hysteresis loop of steel and soft iron.					
			(4 marks)			
(c)	Deriv	Derive the expression for the force between two straight parallel conductors				
	carry	ring current in the same direction.	(4 marks)			
(d)	The g	The galvanometer is simply a coil and a permanent magnetic. Explain				
	quan	(6 marks)				