KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: COMP 451

COURSE TITLE: MICROPROCESSOR – BASED DESIGN

STREAM: Y4S1

DAY: MONDAY

TIME: 8.30 -10.30 A.M.

DATE: 06/12/2008

INSTRUCTIONS:

- 1. Attempt question **one** and any other two questions.
- 2. Question one carries 30 marks and the rest 20 each.

PLEASE TURN OVER QUESTION ONE (30 MARKS)

(a) A memory unit has a capacity of 65,535 words of 25 bits each. It is used in	
conjunction with a general purpose computer. The instruction code is divided in	to
four parts. An indirect mode bit, operation code, two bits that specify a processo	r
register and an address part.	
(i) What is the maximum number of operations that can be incorporated in the	
computer if the instruction is stored in one memory word.	(3)
(ii) Draw the instruction word format indicating the number of bits.	(1.5)
(iii) How many bits are there in MBR, MAR and PC for the said memory capacity.	(1.5)
(b) (i) What is a control flow chart?	(1)
(ii) Name two types of blocks used in a low chart, clearly explaining the function	n of
each of them.	(3)
(iii) Use a control flow chart to summarize the paths taken by the control unit du	ring
an execute cycle.	(5)
(iv) A bus organized CPU contains 30 processor registers. How many bits are ne	eded
to select each source register and destination register?	(1.5)
(c) Distinguish between the following:	
(i) Operation, micro operation and a macro operation	(1.5)
(ii) Fetch cycle, indirect cycle, execute cycle and interrupt cycles	(2)
(d) Consider two 8-bit binary numbers $A = 01000001$ and $B = 10000100$	
(i) Give the decimal equivalent of each number assuming	
(a) That they are unsigned.	(1)
(b). That they are signed numbers in 2's complement representation.	(1)
(ii). Add the two unsigned binary numbers. What is the value of the status bit	s C,
S, Z and V.	(5)
(e) (i) Give the infix notations of the following reverse polish expression.	
AB * CD * + EF * +	(0.5)
(ii) Perform the logic AND, OR and XOR with two numbers 1001110 and	
10101010	(2.5)

QUESTION TWO (20 MARKS)

- (a) Draw a block diagram of an Intel 8080 microprocessor. (5)
- (b) From the table below, List
 - (i) List of the control functions. (8)
 - (ii) List of the micro operations that execute these instructions. (7)

Operation	Symbolic function	Description
code		
000	AC ← AC + M	ADD TO AC
001	If $(AC > 0)$ Then $PC \longleftarrow m$	Branch If Ac is positive
		and non- zero
010	M ← M BR	Store in Ac
011	If (M =0), Then PC	Increment and skip if zero

QUESTION THREE (20 MARKS)

- (a) It is the function of the control unit to keep track of various cycles that occur during a Computer run. Draw a block diagram of the control unit showing various components that are used in generation of various control functions. (7)
- (b) An instruction is read from memory during the fetch cycle. Show the register transfer relations that specify this process. (7)
- (c) The register transfer micro operation that specifies an indirect cycle. (6)

QUESTION FOUR (20 MARKS)

- (a) The increment and skip instruction is useful for address modification and counting the number of times a program loop is executed. Show
 - (i) The macro-statement of the instruction (2)
 - (ii) The sequence of micro operation that implements the instruction. (6)
- (b) Distinguish between the following instructions, clearly stating the micro operations

that implements them	
(i) BUN: Branch unconditionally	(3)
(ii) BSA: Branch and save address.	(9)
QUESTION FIVE (TWENTY MARKS)	
Write the programs to evaluate the arithmetic statement	
X = (A+B) * (C+D)	
(i) Using a general-register -type computer with two-address instruction.	(4)
(ii) Using a stack organized CPU with zero-address operation instruction.	(4)
(b) Draw a block diagram showing the organization of a memory stack.	(2)
(c) In some details write and explain the sequence of micro operations that implement	nts
the following operations in a stack memory.	
(a) Push operation	(5)

(5)

(b) Pop operation.