

UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: COMP 451

COURSE TITLE: MICROPROCESSOR-BASED SYSTEMS

STREAM:

DAY:
TIME:
DATE:
16/12/2010

INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions. Question One carries 30marks while each of the other Two Questions carry 20marks.
- The 8085 Instruction set is appended.

PLEASE TURNOVER

QUESTION 1 (30 marks)

a) Perform the following arithmetic
(4mks)
i). $0 \mathrm{CDFH}+0 \mathrm{ABCH}$
ii). 00001000-00000011
b) i) What is a microprocessor?
(1mk)
ii) State two basic operations of a microprocessor
(2mks)
c) Explain briefly the functions of the following register units in the 8085 microprocessor.
(3mks)
i.) Stack pointer
ii.) Timing and control
iii.) Instruction register and decoder
d) i) What is an interrupt?
(1mk)
ii) State any two classifications of 8085 microprocessor pins
(2mks)
e) i) What is memory?
(1mk)
ii) A memory chip has a capacity of 4 K byte, how many address lines does it have?
(1mk)
iii) State two groups of classifying memories. State one example of each class of memory
f) Explain briefly what the following means as used with microprocessors.
(3mks)
i.) Branch instructions
ii.) Interrupts
iii.) Subroutine
g) Write down an assembly language program of adding two numbers 234 H and 566 H using 8085 instruction set
g) Differentiate between the following
i). Instruction set and addressing modes
ii). Register addressing mode and register indirect addressing mode with respect to 8085 microprocessor. Write a short 8085 instruction example to illustrate the difference between the two addressing.
(4mks)

QUESTION 2 (20 marks)

a) Differentiate between the following
i.) Machine code programming and assembly language programming
ii.) The assembler program and the compiler program
b) Write an algorithm for adding odd numbers between 0 and 20 for the 8085 microprocessor. Develop your program as follows
i.) Outline the steps followed. Use registers A, B and C
ii.) Assuming the first memory location is 26 DDH ; write the assembly language program to perform this operation using appropriate 8085 instruction set. Show also memory contents in hex codes.
iii.) Simply your program in (ii) using a flow chart
c) i) Hand assemble the given assembly language program of 8085 microprocessor assuming that the first memory locations is 0066 H .

START: MVI B, 4 FHMVI C, 78 H
OUT 07H
CALL DEL
MVI A, 8FH
MVI B, 68 H
SUB B
ANI 0FH
STA 2070H
CALL DEL
AGAIN: IN F2H
CMA
ORA A
JZ AGAIN
DEL: LXI D, 00FFH
REP: DCX D
MOV A, E
ORA D
JNZ REP
RET

ii) State the address of the following in the hand assembled program
(2mks)
I) DEL label
II) STA instruction

QUESTION 3 (20 marks)

a) i) What is interfacing?
ii) State and explain two types of interfaces.
iii) State and explain two features that need to be considered when selecting an interface circuit
b) i) State and explain two modes of operation of 8255 PPI
ii) Present the control word format of 8255 PPI
c) A microprocessor-based system uses the 8255 PPI as its I/O device. If this system is to be used to read bit pattern from port B and output the same to port A and Port C continuously and endlessly;
i) Write an assembly language program to perform this operation using appropriate 8085 instruction set. Assume that the first memory location is 78EFH and use a delay constant of FDEFH between the outputs in register pair DE.
ii) State the memory address of the last byte of the instruction in (i) above
iii) State two advantages of using mnemonics as opposed to binary values or hex codes.
(2mks)

QUESTION 4 (20 marks)

a) State and use flow charts to show the three standard structures used to represent the operations involved in program writing
(3mks)
b) Distinguish between the following
(4mks)
i). Algorithm and program
ii). Assembler and compiler
c) State three things that a microprocessor should do in order to communicate with a memory or I/O device.
d) i) State and explain two way of memory expansion
ii) By considering suitable memory sizes, show using a block diagram how the above schemes of memory expansion can be achieved
e) State and explain using instruction example in each case, the classification of 8085 instruction set sizes.

QUESTION 5 (20 marks)

a) i) What is a microprocessor-based system
ii) Outline the components required for the design of a microprocessor-based system.
iii) Give in block diagram how the components in (ii) are organized to form the system.
c) i) What is stack? How is it specified?
ii) What is bus contention problem? How is this situation prevented?
d) Consider the following assembly language program of a microprocessor-based system using the 8255 PPI .

MVI A, 80H
OUT 03H
START: MVI A, AAH
OUT 00H
OUT 01H
OUT 02H
CALL SUBTASK
MVI A, 55H
OUT 00H
OUT 01H
OUT 02H
CALL SUBTASK
JMP START
SUBTASK: LXI D, FFDFH
AGAIN: DCX D
MOVA, E
ORA D
JNZ AGAIN
RET
i.) Suggest what the first two instructions is doing
(2mks)
ii.) Name the labels used in this program and state their importance
iii.) Suggest what the whole program is doing
iv.) Hand assembles the above program showing only two columns of address and memory contents in hex codes. Assume the first memory location is 489 EH .
(4mks)

THE 8085 INSTRUCTION SET

CE	ACI	N	3D	DCR	A	7E	MOV	A,M
8F	ADC	A	05	DCR	B	47	MOV	B, A
88	ADC	B	0D	DCR	C	40	MOV	B,B
89	ADC	C	15	DCR	D	41	MOV	B, C
8A	ADC	D	1D	DCR	E	42	MOV	B,D
8B	ADC	E	25	DCR	H	43	MOV	B, E
8C	ADC	H	2D	DCR	L	44	MOV	B,H
8D	ADC	L	35	DCR	M	45	MOV	B,L
8E	ADC	M	0B	DCX	B	46	MOV	B, M
87	ADD	A	1B	DCX	D	4F	MOV	C,A
80	ADD	B	2B	DCX	H	48	MOV	C, B
81	ADD	C	3B	DCX	SP	49	MOV	C, C
82	ADD	D	F3	DI		4A	MOV	C, D
83	ADD	E	FB	EI		4B	MOV	C, E
84	ADD	H	76	HLT		4C	MOV	C, H
85	ADD	L	DB	IN	N	4D	MOV	C,L
86	ADD	M	3C	INR	A	4E	MOV	C,M
C6	ADI	N	04	INR	B	57	MOV	D,A
A7	ANA	A	0C	INR	C	50	MOV	D, B
A0	ANA	B	14	INR	D	51	MOV	D, C
A1	ANA	C	1C	INR	E	52	MOV	D, D
A2	ANA	D	24	INR	H	53	MOV	D,E
A3	ANA	E	2C	INR	L	54	MOV	D, H
A4	ANA	H	34	INR	M	55	MOV	D,L
A5	ANA	L	03	INX	B	56	MOV	D,M
A6	ANA	M	13	INX	D	5F	MOV	E,A
E6	ANI	N	23	INX	H	58	MOV	E,B
CD	CALL	NN	33	INX	SP	59	MOV	E,C
DC	CC	NN	DA	JC	NN	5A	MOV	E,D
FC	CM	NN	FA	JM	NN	5B	MOV	E,E
2F	CMA		C3	JMP	NN	5C	MOV	E,H
3F	CMC		D2	JNC	NN	5D	MOV	E,L
BF	CMP	A	C2	JNZ	NN	5E	MOV	E,M
B8	CMP	B	F2	JP	NN	67	MOV	H,A
B9	CMP	C	EA	JPE	NN	60	MOV	H,B
BA	CMP	D	E2	JPO	NN	61	MOV	H,C
BB	CMP	E	CA	JZ	NN	62	MOV	H,D
BC	CMP	H	3A	LDA	NN	63	MOV	H,E
BD	CMP	L	0A	LDAX	B	64	MOV	H,H
BE	CMP	M	1A	LDAX	D	65	MOV	H,L
D4	CNC	NN	2A	LHLD	NN	66	MOV	H,M
C4	CNZ	NN	01	LXI	B,NN	6F	MOV	L,A
F4	CP	NN	11	LXI	D,NN	68	MOV	L,B
EC	CPE	NN	21	LXI	H,NN	69	MOV	L, C
FE	CPI	N	31	LXI	SP,NN	6A	MOV	L,D
E4	CPO	NN	7F	MOV	A, A	6B	MOV	L, E
CC	CZ	NN	78	MOV	A,B	6C	MOV	L,H
27	DAA		79	MOV	A, C	6D	MOV	L,L
09	DAD	B	7A	MOV	A,D	6E	MOV	L,M
19	DAD	D	7B	MOV	A,E	77	MOV	M,A
29	DAD	H	7C	MOV	A, H	70	MOV	M, B
39	DAD	SP	7D	MOV	A,L	71	MOV	M, C
72	MOV	M,D	E5	PUSH	H	9D	SBB	L
73	MOV	M,E	F5	PUSH	PSW	9E	SBB	M

74	MOV	M, H	17	RAL		DE	SBI	N
75	MOV	M,L	1F	RAR		22	SHLD	NN
3E	MVI	A,N	D8	RC		30	SIM	
06	MVI	B,N	C9	RET		F9	SPHL	
0E	MVI	C,N	20	RIM		32	STA	NN
16	MVI	D,N	07	RLC		02	STAX	B
1E	MVI	E,N	F8	RM		12	STAX	D
26	MVI	H,NN	D0	RNC		37	STC	
2E	MVI	L,N	C0	RNZ		97	SUB	A
36	MVI	M,N	F0	RP		90	SUB	B
00	NOP		E8	RPE		91	SUB	C
B7	ORA	A	E0	RPO		92	SUB	D
B0	ORA	B	0F	RRC		93	SUB	E
B1	ORA	C	C7	RST	0	94	SUB	H
B2	ORA	D	CF	RST	1	95	SUB	L
B3	ORA	E	D7	RST	2	96	SUB	M
B4	ORA	H	DF	RST	3	D6	SUI	N
B5	ORA	L	E7	RST	4	EB	XCHG	
B6	ORA	M	EF	RST	5	AF	XRA	A
F6	ORI	N	F7	RST	6	A8	XRA	B
D3	OUT	N	FF	RST	7	A9	XRA	C
E9	PCHL		C8	RZ		AA	XRA	D
C1	POP	B	9F	SBB	A	AB	XRA	E
D1	POP	D	98	SBB	B	AC	XRA	H
E1	POP	H	99	SBB	C	AD	XRA	L
F1	POP	PSW	9A	SBB	D	AE	XRA	M
C5	PUSH	B	9B	SBB	E	EE	XRA	N
D5	PUSH	D	9 C	SBB	H	E3	XTHL	

