KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

COURSE CODE: MATH 425

COURSE TITLE: MULTIVARIATE ANALYSIS

- STREAM: Y4S2
- DAY: THURSDAY
- TIME: 9.00 11.00 A.M.
- DATE: 09/12/2009

INSTRUCTIONS:

- 1. Answer **QUESTION ONE** and **TWO** other questions
- 2. Show all your working method and be neat

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

a) Given $\underline{\mathbf{X}} = (x_1, x_2, x_3)^{T}$ where $f(\underline{x}) = e^{-x_2} (x_1 + x_3)$, $0 < x_1 < 1$, $0 < x_3 < 1$, $x_2 > 0$ find the mean vector of $\underline{\mathbf{X}}$ (or alternatively find marginal means of x_1 , x_2 and x_3) [5 marks]

b) Given that
$$\underline{X} \sim \operatorname{Np}(\mu, \Sigma)$$
 where $\underline{\mu} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$ and $\sum = \begin{bmatrix} 2 & 2 & 1 \\ 2 & 5 & 1 \\ 1 & 1 & 2 \end{bmatrix}$
find the conditional distribution of $\underline{x}_1 = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ given $X_3 = x_3$ [10 marks]

c) Derive expressions for the mean and variances of the following linear combinations in terms of the means and covariances of the random variables X₁, X₂, and X₃. [15 marks]
ii) X₁ -2X₂
ii) -X₁ +2X₃
iii) X₁ +X₂ +X₃

iv) $X_1 + X_2 + X_3$ iv) $X_1 + 2X_2 - X_3$

v) $3X_1 - 4X_2$ if X_1 and X_2 are independent random variables.

QUESTION TWO (20 MARKS)

A) Let $\mathbf{x} = (x_1, x_2, x_3)'$ be a random vector with a mean vector $\underline{\mu} = (\mu_1, \mu_2, \mu_3)$ and dispersion matrix S where μ and S are unknown. Given the values of a data matrix for a random sample of size n = 5 from \mathbf{x}

		5	4	3]
		6	5	4	
X	=	8	7	5	
		7	8	3	
		9	6	5	

Compute

i) The sample mean vector	[2 marks]
ii) Sample covariance matrix S and the unbiased estimate of Sn	[3 marks]
iii) Sample correlation matrix	[3 marks]
iv) State whether $x_1 x_2$, x_3 are independent from each other	[2 marks]

[10 marks]

B) Let X have covariance matrix

$$\sum = \begin{bmatrix} 25 & -2 & 4 \\ -2 & 4 & 1 \\ 4 & 0 & 9 \end{bmatrix}$$

i) Determine ρ and $V^{1/2}$

ii) Multiply your matrices to check the relation $V^{1/2} \rho V^{1/2} = \sum$

QUESTION THREE (20 MARKS)

A) Let X be N₃(
$$\mu$$
, \sum) with $\mu' = (-2.5, 1.5, 4)$ and

$$\sum = \begin{bmatrix} 1 & -3 & 0 \\ -3 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
Which of the following random variables are independent? Explain.

[10 marks]

a) X₁ and X₂
b) X₂ and X₃
c) (X₁, X₂) and X₃
d)
$$\frac{X_1 + X_2}{2}$$
 and X₃
e)X₂ and X₂- $\frac{5}{2}$ X₁-X₃
b) Let

$$\sum = \begin{bmatrix} 2 & 0 \\ 0 & 4 \\ 0 & 0 \end{bmatrix}$$

Determine the principal components Y1, Y2 and Y3. What can you say about the eigenvectors (and principal components) associated with eigenvalues that are not distinct? [10 marks]

0 0 4

QUESTION FOUR (20 MARKS)

A) Calculate the least square estimates $\hat{\beta}$, the residuals $\hat{\varepsilon}$, and the residual sum of squares for a straight-line model

 $Y_i = \beta_0 + \beta_1 z_{j1} + \varepsilon_j$

fit to data					
Z ₁	0	1	2	3	4
у	1	4	3	8	9

B) A researcher considered five companies, x_1 , x_2 , x_3 , x_4 , x_5 of Allied Chemical, DupPont, Union Carbide, Exxon and Texaco for weekly rates of returns respectively. The means and correlation matrix, **R** are given below:

	0.0054		1.000	0.577	0.509	0.387	0.462
	0.0048		0.577	1.000	0.599	0.389	0.322
$\overline{x} =$	0.0057	and $R =$	0.509	0.599	1.000	0.436	0.426
	0.0063		0.387	0.389	0.436	1.000	0.523
	0.0037		0.462	0.322	0.426	0.523	1.000

The eigenvalues and corresponding normalized eigenvectors of R were determined by a computer and are given below

$$\hat{\lambda}_{1} = 2.857, \hat{\gamma}_{1} = [0.464, 0.457, 0.470, 0.421, 0.421]$$

$$\hat{\lambda}_{2} = 0.809, \hat{\gamma}_{2} = [0.240, 0.509, 0.260, -0.526, -0.582]$$

$$\lambda_{3} = 0.540, \hat{\gamma}_{4} = [-0.612, 0.178, 0.335, -0.541, -0.435]$$

$$\hat{\lambda}_{4} = 0.452, \hat{\gamma}_{4} = [0.387, 0.206, -0.662, 0.472, -0.382]$$

$$\hat{\lambda}_{5} = 0.343, \hat{\gamma}_{5} = [-0.451, 0.676, -0.400, -0.176, 0.385]$$
i) Write down principal components that accounts for the equation of th

i) Write down principal components that accounts for the communality of at least 73% of variations. [5 marks]

ii) Interpret the results you have stated in (i) as fully as possible

[5 marks] [5 marks]

[10 marks]