UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

COURSE CODE: MATH 425
COURSE TITLE: MULTIVARIATE ANALYSIS
STREAM: Y4S2
DAY: THURSDAY
TIME:
9.00-11.00 A.M.

DATE:
09/12/2009

INSTRUCTIONS:

1. Answer QUESTION ONE and TWO other questions
2. Show all your working method and be neat

QUESTION ONE (30 MARKS)

a) Given $\underline{\mathbf{X}}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)^{\prime}$ where $f(\underline{x})=e^{-x_{2}}\left(x_{1}+x_{3}\right), 0<\mathrm{x}_{1}<1,0<\mathrm{x}_{3}<1, \mathrm{x}_{2}>0$
find the mean vextor of $\underline{\mathbf{X}}$ (or alternatively find marginal means of x_{1}, x_{2} and x_{3}) [$\mathbf{5}$ marks]
b) Given that $\underline{X} \sim \operatorname{Np}(\mu, \Sigma)$ where $\underline{\mu}=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$ and $\sum=\left[\begin{array}{lll}2 & 2 & 1 \\ 2 & 5 & 1 \\ 1 & 1 & 2\end{array}\right]$
find the conditional distribution of $\underline{x_{1}}=\binom{\mathrm{x}_{1}}{x_{2}}$ given $\mathrm{X}_{3}=\mathrm{x}_{3}$
[10 marks]
c) Derive expressions for the mean and variances of the following linear combinations in terms of the means and covariances of the random variables $\mathrm{X}_{1}, \mathrm{X}_{2}$, and X_{3}.
[15 marks]
i) $X_{1}-2 X_{2}$
ii) $-X_{1}+2 X_{3}$
iii) $X_{1}+X_{2}+X_{3}$
iv) $X_{1}+2 X_{2}-X_{3}$
v) $3 X_{1}-4 X_{2}$ if X_{1} and X_{2} are independent random variables.

QUESTION TWO (20 MARKS)

A) Let $\mathbf{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)^{\prime}$ be a random vector with a mean vector $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ and dispersion matrix S where μ and S are unknown. Given the values of a data matrix for a random sample of size $\mathrm{n}=5$ from \mathbf{x}

$$
X=\left[\begin{array}{lll}
5 & 4 & 3 \\
6 & 5 & 4 \\
8 & 7 & 5 \\
7 & 8 & 3 \\
9 & 6 & 5
\end{array}\right]
$$

Compute
i) The sample mean vector
ii) Sample covariance matrix S and the unbiased estimate of Sn
iii) Sample correlation matrix
iv) State whether $x_{1} x_{2}, x_{3}$ are independent from each other
B) Let \mathbf{X} have covariance matrix
[10 marks]

$$
\sum=\left[\begin{array}{ccc}
25 & -2 & 4 \\
-2 & 4 & 1 \\
4 & 0 & 9
\end{array}\right]
$$

i) Determine ρ and $V^{1 / 2}$
ii) Multiply your matrices to check the relation $V^{1 / 2} \boldsymbol{\rho} V^{1 / 2}=\sum$

QUESTION THREE (20 MARKS)

A) Let X be $\mathrm{N}_{3}(\mu, \Sigma)$ with $\mu^{\prime}=(-2.5,1.5,4)$ and

$$
\sum=\left[\begin{array}{lll}
1 & -3 & 0 \\
-3 & 5 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Which of the following random variables are independent? Explain.
a) X_{1} and X_{2}
b) X_{2} and X_{3}
c) $\left(X_{1}, X_{2}\right)$ and X_{3}
d) $\frac{X_{1}+X_{2}}{2}$ and X_{3}
e) X_{2} and $X_{2}-\frac{5}{2} X_{1}-X_{3}$
b) Let

$$
\sum=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

Determine the principal components Y1, Y2 and Y3. What can you say about the eigenvectors (and principal components) associated with eigenvalues that are not distinct?

QUESTION FOUR (20 MARKS)

A) Calculate the least square estimates $\hat{\beta}$, the residuals $\hat{\varepsilon}$, and the residual sum of squares for a straight-line model $Y_{i}=\beta_{0}+\beta_{1} z_{j 1}+\varepsilon_{j} \quad$ fit to data
[10 marks]

z_{1}	0	1	2	3	4
y	1	4	3	8	9

B) A researcher considered five companies, $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}$ of Allied Chemical, DupPont, Union Carbide, Exxon and Texaco for weekly rates of returns respectively. The means and correlation matrix, \mathbf{R} are given below:
$\bar{x}=\left[\begin{array}{l}0.0054 \\ 0.0048 \\ 0.0057 \\ 0.0063 \\ 0.0037\end{array}\right]$ and $R=\left[\begin{array}{ccccc}1.000 & 0.577 & 0.509 & 0.387 & 0.462 \\ 0.577 & 1.000 & 0.599 & 0.389 & 0.322 \\ 0.509 & 0.599 & 1.000 & 0.436 & 0.426 \\ 0.387 & 0.389 & 0.436 & 1.000 & 0.523 \\ 0.462 & 0.322 & 0.426 & 0.523 & 1.000\end{array}\right]$

The eigenvalues and corresponding normalized eigenvectors of R were determined by a computer and are given below
$\hat{\lambda}_{1}=2.857, \hat{\gamma}_{1}=[0.464,0.457,0.470,0.421,0.421]$
$\hat{\lambda}_{2}=0.809, \hat{\gamma}_{2}=[0.240,0.509,0.260,-0.526,-0.582]$
$\lambda_{3}=0.540, \hat{\gamma}_{4}=[-0.612,0.178,0.335,-0.541,-0.435]$
$\hat{\lambda}_{4}=0.452, \hat{\gamma}_{4}=[0.387,0.206,-0.662,0.472,-0.382]$
$\hat{\lambda}_{5}=0.343, \hat{\gamma}_{5}=[-0.451,0.676,-0.400,-0.176,0.385]$
i) Write down principal components that accounts for the communality of at least 73% of variations.
[5 marks]
[5 marks]

