UNIVERSITY

UNIVERSITY EXAMINATIONS

COURSE CODE: MATH 425
COURSE TITLE: MULTIVARIATE ANALYSISSTREAM: Y4S2
DAY: TUESDAYTIME:9.00 - 11.00 A.M.DATE:23/03/2010

INSTRUCTIONS:

1. Answer question ONE and any other TWO questions
2. Begin each question on a separate page
3. Show your workings clearly and neatly.

QUESTION ONE (30 MARKS)

a) Given $\mathbf{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ where $\mathrm{f}(\mathrm{x})=\mathrm{e}^{-\mathrm{x}_{2}}\left(\mathrm{x}_{1}+\mathrm{x}_{3}\right), 0<\mathrm{x}_{1}<1,0<\mathrm{x}_{3}<1$ Determine the mean vector of \mathbf{x}
b) If $\left.\mathbf{a}=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{5}\right), \ldots . \mathrm{a}_{\mathrm{p}}\right)$ is a non-zerovector of order p and $\mathbf{y}=\mathbf{\mathbf { a } ^ { \prime } \mathbf { x }}$. Show that
i) $\quad \mathrm{E}\left(\mathbf{a}^{\prime} \mathbf{x}\right)=\mathbf{a}^{\prime} \mu$
(4 marks)
ii) $\quad \operatorname{Var}\left(\mathbf{a}^{\prime} \mathbf{x}\right)=\mathbf{a}^{\prime} \Sigma \mathbf{a}$
c) Let $\mathbf{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$, be a random vector with dispersion matrix with dispersion

$$
\Sigma=\left(\begin{array}{lll}
4 & 1 & 2 \\
1 & 9 & -3 \\
2 & -3 & 25
\end{array}\right)
$$

i) Find the correlation matrix ρ and $\mathbf{x} \quad$ (4 marks)
ii) Show that Σ is a positive definite matrix (5 marks)
iii) Find the variance of $\mathrm{z}=\mathrm{x}_{1}-2 \mathrm{x}_{2}-\mathrm{x}_{3} \quad$ (4 marks)
iv) Find the dispersion matrix of $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right)$ where $y_{1}=x_{1}+x_{2}, y_{2}=x_{2}$ and $\mathrm{y}_{3}=\mathrm{x}_{1}-2 \mathrm{x}_{2}-\mathrm{x}_{3}$ and Covariance of $\mathrm{z}_{1}=\mathrm{x}_{1}+\mathrm{x}_{2}$ and $\mathrm{z}_{2}=\mathrm{x}_{1}-2 \mathrm{x}_{2}-\mathrm{x}_{3}(8$ marks $)$

QUESTION TWO (20 MARKS)

d) Let $\mathbf{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)^{\prime}$ be a random vector with a mean vector $\mu=\left(\mu_{1} \mu_{2} \mu_{3}\right)$ and dispersion matrix Σ where μ and Σ are unknown, Given the values of a data matri x for a random sample of size $n=5$ from \mathbf{x}

$$
X=\left(\begin{array}{lll}
5 & 6 & 9 \\
3 & 8 & 7 \\
5 & 7 & 8 \\
4 & 5 & 6 \\
3 & 4 & 5
\end{array}\right)
$$

Compute

i) The sample mean vector
(4 marks)
ii) Sample covariance matrix S and the unbiased estimate of S_{n} (8 marks)
iii) Sample correlation matrix
(8 marks)

QUESTION THREE (20 MARKS)

a) Consider $\mathrm{n}_{1}=\mathrm{n}_{2}=50$ observations from two species I_{1} and I_{2} with measurements x_{1} (length) and x_{2} (width) in cm .For each observation the ML estimates are i.e the sample mean and variance for each group are;

$$
\bar{x}_{1}=(5.006,3.428)^{\prime} \quad \bar{x}_{2}=(5.936,2.770)^{\prime}
$$

$$
S_{1}=\left(\begin{array}{ll}
0.1218 & 0.0972 \\
0.0972 & 0.1408
\end{array}\right) \quad S_{2}=\left(\begin{array}{ll}
0.2611 & 0.0835 \\
0.0835 & 0.0965
\end{array}\right.
$$

i) Find the discriminant rule for allocating a new observation $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ to Π_{1} or Π_{2} (7 marks)
ii) Estimate the probability of misallocation (5 marks)
b) Consider ML discriminant function, proof the probability of misallocation (8 marks)

QUESTION FOUR (2O MARKS)

The director of a management school wants to do discriminant analysis concerning the effects of two factors, namely, the yearly spending (in Kshs) on infrastructures of the school (X_{1}) and yearly spending on interface events of the school $\left(X_{2}\right)$ on the grading of the school by an inspection team. He has collected the data for the last 12 years and submitted to the inspection team as shown below. Based on the data, the committee has awarded one of the following grades for each year as shown in the same table.

Year	Grade	Infrastructure $\left(X_{1}\right)$	interface events $\left(X_{2}\right)$
1	Below	3	4
2	Below	4	5
3	Above	10	7
4	Below	5	4
5	Below	6	6
6	Above	1	4
7	Below	7	4
8	Above	12	5
9	Below	8	7
10	Below	9	5
11	Above	13	6
12	Above	14	8

a) Design the discriminant function, $\mathrm{Y}=\mathrm{a} X_{1}+\mathrm{b} X_{2}$
(10 marks)
b) Compute the discriminant ratio k and identity the variable which is more important in the relation to the other variable
(10 marks)

QUESTION FIVE (20 MARKS)

A marketing manager of a two-wheeler company designed questionnaires to study the customer's feedback about its two-wheeler and in turn he is keen in identifying the factors of his study. He has identified six variables which are listed below

1 Fuel efficiency X_{1}
2 Life of two-wheeler X_{2}
3 Handling convenience X_{3}
4 Quality of original spares X_{4}
5 Breakdown rate X_{2}
6 Price X_{6}
So the company administered a questionnaire among 10 customers to obtain their opinion on the above variables. The range of the scores for each of the above variables is assumed to be between 0 and 10 . The score 0 means low ratings and 10 mean high rating. The survey data are summarized below. Perform factor analysis using centroid method to identify three factors which can represent the variables of the study.

Survey data

Respondents	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	6	8	9	9	1	2
2	4	4	6	8	2	1
3	4	1	6	5	1	2
4	1	2	6	3	2	3
5	4	3	5	5	2	3
6	4	4	6	8	2	3
7	3	3	0	9	1	3
8	7	7	6	9	9	2
9	5	3	1	8	1	2
10	5	4	2	3	1	0

