KABARAK



UNIVERSITY

# **UNIVERSITY EXAMINATIONS**

## 2009/2010 ACADEMIC YEAR

# FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

## **COURSE CODE: MATH 314**

# **COURSE TITLE: NUMERICAL ANALYSIS**

- STREAM: Y3S1
- DAY: FRIDAY
- TIME: 2.00 4.00 P.M.
- DATE: 06/08/2010

### **INSTRUCTIONS:**

> Answer Question **ONE** and any other **TWO** questions

### PLEASE TURNOVER

#### **QUESTION ONE: 30 MARKS**

- a) Define the following terms as used in connection with errors.
  - (i) Relative error
  - (ii) Round-off error (2 marks)
- Estimate the error in evaluating  $f(x, y, z) = x^2 + \frac{y}{z}$  for x = 1.23, y = 2.34, z = 3.45b) where each of these is assumed to be correctly rounded to the number of significant figures shown. Hence find f. (5 marks) find f(x)Construct a difference table for the values shown in the table below and c) 1 5 6 0 2 3 4 7 x f(x) = 12 4 7 11 16 22 29 (5 marks)

 d) Use the Lagrange interpolation polynomial to find the equation of the curve passing through the points

- x: 0
   1
   2

   f(x): 0
   1
   20
   (5 marks)
- e) Use the iterative method to solve the equation  $x^3 x^2 1 = 0$  (6 Marks)
- f) Set-up a New- Raphson formula to find the cube root of N where N is a positive number and hence find the cube root of 15.
   (7 marks)

#### **QUESTION TWO: 20 MARKS**

a) Consider the sequence of values  $f(x) = (0, 0, 0, \varepsilon, 0, 0, 0)$  where  $\varepsilon$  is an error. Show that

- (i) Error spreads and increases in magnitude as the order of the difference is increased.
- (ii) The error in each column have binomial coefficients. (6 marks)

b) Prove that 
$$\sum_{k=1}^{n-1} \Delta y_k = y_n - y_0$$
 (4 marks)

c) (i) the new forward formula for the collocation polynomial can be written as

$$p_{k} = \sum_{i=0}^{n} \binom{k}{i} \Delta^{i} y_{0}.$$
 Prove that  $y_{1} = y_{0} + \Delta y_{0}, y_{2} = y_{0} + 2\Delta y_{0} + \Delta^{2} y_{0},$ 

- $y_3 = y_0 + 3\Delta y_0 + 3\Delta^2 y_0 + \Delta^3 y_0.$
- (ii) Apply Newton's formula to find a polynomial of degree four or less

which takes the values below.

| $x_k$ : | 1 | 2  | 3 | 4  | 5 |            |
|---------|---|----|---|----|---|------------|
| $y_k$ : | 1 | -1 | 1 | -1 | 1 | (10 marks) |

#### **QUESTION THREE: 20 MARKS**

- a) Show that the equation  $f(x) = x^3 x 1 = 0$  has o root in the interval [0,1]. Apply Newton-Raphson method to determine the root of the equation. (5 marks)
- b) Derive the Newton's backwards interpolation formulae. Hence or otherwise obtain the collocation polynomial for the following data:
  - x:0.10.20.30.40.5f(x):1.401.561.762.002.28Interpolate at x=0.25.(8 marks)

c) Let  $\overline{x}$  and  $\overline{y}$  be approximate numbers with errors  $\varepsilon_1$  and  $\varepsilon_2$  respectively to the exact numbers x and y. if  $f = \frac{x}{y}$  determine the maximum error in computing f and further find f as accurately as possible if  $x = 3.55 \pm 0.05$ ,  $y = 3.75 \pm 0.05$  (7 marks)

### **QUESTION FOUR: 20 MARKS**

| a) | Find t                                                   | below  | at $x = 0.6$ |          |          |              |          |     |            |
|----|----------------------------------------------------------|--------|--------------|----------|----------|--------------|----------|-----|------------|
|    | x:                                                       | 0.4    |              | 0.5      |          | 0.6          | 0.7      | 0.8 |            |
|    | y:                                                       | 1.5838 | 8 1.797      | 4 2.0442 | 2 2.3275 | 5 2.6511 (10 | ) marks) |     |            |
| b) | Use Lagrange's interpolation formula to find y(9.5)given |        |              |          |          |              |          |     |            |
|    | x:                                                       |        | 7            | 8        | 9        | 19           |          |     |            |
|    | y:                                                       |        | 3            | 1        | 1        | 9            |          |     | (10 marks) |
|    |                                                          |        |              |          |          |              |          |     |            |

#### **QUESTION FIVE: 20 MARKS**

Evaluate  $I \Longrightarrow \int_{1.00}^{1.30} \sqrt{x} dx$  with subdivision of 0.05 using a) (i) Trapezoidal rule (ii) Simpson's  $\frac{1}{3}$  rule (iii) Direct integration [exact solution]. Estimate the error involved in each case.(12 marks) Using Newton's divided difference formula find f(x) and hence f(6) from the following table. b) 1 2 7 8 x; 5 5 1 4 (8 marks) y: