

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 314
COURSE TITLE: NUMERICAL ANALYSIS EXAM
STREAM: SESSION VI \& VII
DAY: MONDAY
TIME: $\quad 2.00-4.00$ P.M.
DATE:
06/04/2009

INSTRUCTIONS TO CANDIDATES:
ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

(a) Find the relative error of the number 8.6 given that both of its digits are correct. (2 marks)
(b) Use Gauss's interpolation formula to get y_{16} given

$\mathrm{x}:$	5	10	15	20	25
$\mathrm{y}:$	26.782	19.951	14.001	8.762	4.163

(c) Find and correct the error in the sequence of numbers below:

$$
1,3,11,31,69,113,223,351,521,739
$$

(d) Show that $\Delta^{3} y_{k}=y_{k+3}-3 y_{k+2}+3 y_{k+1}-y_{k}$
(e) Given that $y=x^{3}+x^{2}-2 x+1$, Determine the values of y for $0 \leq x \leq 5$ and form a difference table. Determine the value of y at $x=6$ by extending the table and verify that the same value is obtained by substitution.
(f) Find the value of $\sqrt{20}$ correct to 3 decimal places by using the iterative formula

$$
x_{i+1}=1 / 2\left(x_{i}+\frac{20}{x_{i}}\right)
$$

QUESTION TWO (30 MARKS)

(a) Find the real root of the equation $x^{3}+x-1=0$ using the iterative formula

$$
x_{i+1}=\left(1-x_{i}\right)^{1 / 3}
$$

(b) Determine the value of y_{-1} if $y_{0}=2, y_{1}=9, y_{2}=28, y_{3}=65, y_{4}=126$ and $y_{5}=217$.
(5 marks)
(c) By use of stirlings formula and the data below, determine the value of $y(1.22)$.

x:	1.0	1.1	1.2	1.3	1.4	1.5	1.6
y:	0.84147	0.89121	0.93204	0.96356	0.98545	0.99749	0.99957
x:	1.7	1.8					
y:	0.99385	0.97385					(10 marks)

QUESTION THREE (20 MARKS)

(a) Use the Newton-Raphson method to find the root of the equation $x^{3}-2 x-5=0$

Correct to 5 decimal places between 2 and 3 .
(5 marks)
(b) Compute the definite integral $\int_{0}^{1} \frac{d x}{1+x}$ by use of Simpson one third rule taking $n=6$
(5 marks)
(c) Use regular falsi method to find a real root of the function: $x \log _{10} x-1.2=0$.
(10 marks)

QUESTION FOUR (20 MARKS)

(a) Show that $\nabla^{3} y_{k}=y_{k}-3 y_{k-1}+3 y_{k-2}-y_{k-3}$
(3 marks)
(b) Construct a backward difference table from the following data:

$$
\operatorname{Sin} 30^{\circ}=0.5000, \operatorname{Sin} 35^{\circ}=0.5736, \operatorname{Sin} 40^{\circ}=0.6428, \operatorname{Sin} 45^{\circ}=0.7071
$$

Assuming that the third backward difference is a constant, determine the value of $\operatorname{Sin} 25^{\circ}$.
(c) $y=f(x)$ is a polynomial of degree 3 and the following table gives the values of x and y. locate and correct the wrong values of y.

x:	0	1	2	3	4	5	6
y:	4	10	30	75	160	294	490

(10 marks)

QUESTION FIVE (20 MARKS)

(a) Calculate the first and second derivatives of the function tabulated below at the point $x=1.2$

x:	1.0	1.2	1.4	1.6	1.8	2.0	2.2	
y:	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250	(10 marks)

(b) Determine the value of $\sqrt[3]{24}$ correct to 3 d.p using Newton-Raphson method. (6 marks)
(c) Find the divided difference of $f(x)=x 3+x+2$ for the inputs

1, 3, 6, 11 .
(4 marks)

