KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 314

- **COURSE TITLE:** NUMERICAL ANALYSIS EXAM
- STREAM: SESSION VI & VII
- DAY: MONDAY
- TIME: 2.00 4.00 P.M.
- DATE: 06/04/2009

INSTRUCTIONS TO CANDIDATES:

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

- (a) Find the relative error of the number 8.6 given that both of its digits are correct. (2 marks)
- (b) Use Gauss's interpolation formula to get y_{16} given

x:	5	10	15	20	25
y:	26.782	19.951	14.001	8.762	4.163

(c) Find and correct the error in the sequence of numbers below:

- 1, 3, 11, 31, 69, 113, 223, 351, 521, 739 (7 marks)
- (d) Show that $\Delta^3 y_k = y_{k+3} 3y_{k+2} + 3y_{k+1} y_k$ (3 marks)
- (e) Given that $y = x^3 + x^2 2x + 1$, Determine the values of y for $0 \le x \le 5$ and form a difference table. Determine the value of y at x = 6 by extending the table and verify that the same value is obtained by substitution. (5 marks)
- (f) Find the value of $\sqrt{20}$ correct to 3 decimal places by using the iterative formula

$$x_{i+1} = \frac{1}{2} \left(x_i + \frac{20}{x_i} \right)$$
 (5 marks)

QUESTION TWO (30 MARKS)

(a) Find the real root of the equation $x^3 + x - 1 = 0$ using the iterative formula

$$x_{i+1} = (1 - x_i)^{\frac{1}{3}}$$
 (5 marks)

(b) Determine the value of y_{-1} if $y_0 = 2$, $y_1 = 9$, $y_2 = 28$, $y_3 = 65$, $y_4 = 126$ and $y_5 = 217$.

```
(5 marks)
```

(c) By use of stirlings formula and the data below, determine the value of y(1.22).

x:	1.0	1.1	1.2	1.3	1.4	1.5	1.6
y:	0.84147	0.89121	0.93204	0.96356	0.98545	0.99749	0.99957

x: 1.7 1.8 y: 0.99385 0.97385 (10 marks)

QUESTION THREE (20 MARKS)

- (a) Use the Newton-Raphson method to find the root of the equation $x^3 2x 5 = 0$ Correct to 5 decimal places between 2 and 3. (5 marks)
- (b) Compute the definite integral $\int_0^1 \frac{dx}{1+x}$ by use of Simpson one third rule taking n = 6 (5 marks)
- (c) Use regular falsi method to find a real root of the function: $x \log_{10} x 1.2 = 0$.

(10 marks)

QUESTION FOUR (20 MARKS)

- (a) Show that $\nabla^3 y_k = y_k 3y_{k-1} + 3y_{k-2} y_{k-3}$ (3 marks)
- (b) Construct a backward difference table from the following data: $Sin 30^{\circ} = 0.5000$, $Sin 35^{\circ} = 0.5736$, $Sin 40^{\circ} = 0.6428$, $Sin 45^{\circ} = 0.7071$.

Assuming that the third backward difference is a constant, determine the value of

$$Sin 25^{\circ}$$
. (7 marks)

(c) y = f(x) is a polynomial of degree 3 and the following table gives the values of x and y.

locate and correct the wrong values of y.

x:	0	1	2	3	4	5	6	
y:	4	10	30	75	160	294	490	(10 marks)

QUESTION FIVE (20 MARKS)

- (a) Calculate the first and second derivatives of the function tabulated below at the point x = 1.2
 - 1.0 1.2 1.4 1.6 1.8 2.0 2.2 x: 2.7183 3.3201 4.0552 4.9530 6.0496 7.3891 9.0250 (10 marks) y:
- (b) Determine the value of $\sqrt[3]{24}$ correct to 3 d.p using Newton-Raphson method. (6 marks)
- (c) Find the divided difference of $f(x) = x^3 + x + 2$ for the inputs
 - 1, 3, 6, 11.
 - (4 marks)