

UNIVERSITY EXAMINATIONS
2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE
COURSE CODE: MATH 314
COURSE TITLE: NUMERICAL ANALYSIS
STREAM:
Y3S1
DAY:
FRIDAY
TIME:
2.00 - 4.00 P.M.

DATE:
19/03/2010

INSTRUCTIONS:
Answer Question ONE and any other TWO Questions.

QUESTION ONE: (30 MARKS)

a). Convert the binary number 1110011.1101001 into
i). Octal number
ii). Hexadecimal Number
iii). Decimal Number
b). Consider the system of linear equations

$$
\begin{aligned}
& x_{1}-2 x_{2}+10 x_{3}=35 \\
& 10 x_{1}-2 x_{2}+x_{3}=17 \\
& -x_{1}+5 x_{2}-x_{3}=-14
\end{aligned}
$$

i). Write down the general Gauss-Seidel iteration for this system.
ii). Starting with $\mathrm{x}_{1}{ }^{(0)}=0.8, \mathrm{x}_{2}{ }^{(0)}=-1.5$ and $\mathrm{x}_{3}{ }^{(0)}=2.5$, solve the system correct to 5 decimal places using the Gauss-Seidel iteration
c). Determine the characteristic equation of the matrix

$$
A=\left(\begin{array}{ccc}
8 & 3 & 0 \\
1 & 0 & 2 \\
0 & 1 & -8
\end{array}\right)
$$

Hence determine the largest positive eigenvalue of A correct to 7 decimal places.
d). Consider the nonlinear equation

$$
f(x)=x^{2}-x^{x}+1=0
$$

show that the equation has a root in the interval $[0,1]$. Hence carry out three iterations of the bisection method to determine the root, giving your answer correct to 4 decimal places.
e). Obtain the Taylor series expansion of $f(x+\beta)$ about β up to the term of order $\beta^{5} \quad$ [5 marks]

QUESTION TWO: (20 MARKS)

a). Use Aitkens' method to find the roots of

$$
f(x)=x^{3}-13 x+8=0
$$

on the interval $\mathrm{I}=[0,1]$ using the iteration scheme $x_{n+1}=\frac{x^{3}{ }_{n}+8}{13}$ correct to 9 decimal places
b). Show that the convergence of Newton Raphson method is of order 2
c). Find the inverse of the matrix $\quad B=\left(\begin{array}{ccc}1 & 2 & 1 \\ 2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right)$
[8 marks]

QUESTION THREE: (20 MARKS)

a). Find the roots of $f(x)=x^{3}+5 x-e^{x}+2=0$ using Newton -Raphson method with $\mathrm{x}_{0}=5.0508$
b). Consider the system

$$
\begin{aligned}
x_{1}+2 x_{2}+40 x_{3} & =48.0035 \\
20 x_{1}+2 x_{2}+x_{3} & =65.9901 \\
2 x_{1}+20 x_{2}+x_{3} & =56.9991
\end{aligned}
$$

i). Solve the system using Gaussian elimination method correct to 6 significant places [8 marks]
ii). Using the results in (i) above, carry out iterative improvements so that the solution is correct to 7 significant figures.

QUESTION FOUR: (20 MARKS)

a). Stating your assumptions, derive the Jacobi iteration for solving the linear system, $A \check{x}=\breve{b}$ where
A is a square matrix of order n.
[9 marks]
b). consider the linear system

$$
\begin{array}{r}
x_{1}+5 x_{2}+x_{3}=14 \\
x_{2}+5 x_{3}=17 \\
5 x_{2}+x_{3}=7
\end{array}
$$

a). Starting with the initial approximations $\tilde{x}^{0}=[1.0018,2.00392 .9996]^{T}$ and using the Jacobi iteration, determine the solutions correct to 4 decimal places.
[11 marks]

QUESTION FIVE: (20 MARKS)

a). The following table of values is given for x and for $\mathrm{f}(\mathrm{x})$ as shown below.

x	-1	1	2	3	4	5	7
$\mathrm{f}(\mathrm{x})$	1	1	16	81	256	625	2401

Using the formula $f^{\prime\left(x_{1}\right)}=\frac{\left[f\left(x_{2}\right)-f\left(x_{0}\right)\right]}{2 h}$ and the Richardson extrapolation, find $f^{\prime \prime}(3) \quad[7$ marks $]$ b). Find the Jacobian matrix of the equations

$$
\begin{aligned}
& f_{1(x, y)}=x^{2}+y^{2}-x=0 \\
& f_{2(x, y)}=x^{2}-y^{2}-y=0
\end{aligned}
$$

At the point $(1,1)$ using the method

$$
\begin{aligned}
& \left(\frac{\partial y}{\partial x}\right)_{x_{i}, y_{j}}=\frac{f_{i+1, j}-f_{i-1, j}}{2 h} \\
& \left(\frac{\partial y}{\partial y}\right)_{x_{i, y}, y_{j}}=\frac{f_{i, j+1}-f_{i, j-1}}{2 h}
\end{aligned}
$$

With $\mathrm{h}=\mathrm{k}=1$
c). Evaluate the integral

$$
I=\int_{1}^{2} \int_{1}^{2} \frac{d x d y}{x+y}
$$

Using the Trapezoidal Rule with $\mathrm{h}=\mathrm{k}=0.5$

