KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: MATH 314

COURSE TITLE: NUMERICAL ANALYSIS

- STREAM: Y3S1
- DAY: FRIDAY
- TIME: 9.00 11.00 A.M.
- DATE: 18/03/2011

INSTRUCTIONS:

Answer question \underline{ONE} and any other \underline{TWO} questions

PLEASE TURN OVER

1. a) Let $x = 3.55 \pm 0.05$ and $y = 2.73 \pm 0.05$ determine the maximum error in calculating

$$f(x) = \frac{x}{y}.$$
 (5 marks)

b) Two quantities are found to be related as below.

	X:	1.0	1.5			3.0	3.5	4.0						
	F(X)	3.1	4.0					2.7						
	Assuming f(x) is continuous find $\int_{1}^{4} f(x) dx$ numerically using both trapezoidal and													
	Simpson's	(6 marks)												
	c) Use Lagrange interpolation polynomial to calculate f(2) from the following table													
	x: 0	1	3											
	f(x) 1	3	35							(6 marks)				
	d) Use the Newton-Raphson's iteration to estimate the square root of 2 starting with $x_0 = 1.4$ upto													
	3 iterations	(5 marks)												
	e) Find $f(x)$ from the following table and also $f(7)$.													
	x: 0	1	2	3	4	5	6							
	F(x):-1	3	19	53	111	199	323			(8 marks)				
2.	a) Consider the sequence of values of $f(x) = (0,0,0,\varepsilon,0,0,0)$ where ε is an error. Show that (i) the error spreads and increase in magnitude as the order of the difference is increased.													
		(6 marks)												
	(ii) the error in each column have binomial coefficients. (6 marks)b) Find and correct a single error in the following table													
	b) Find and Co x:	0	1	2	3	4	5	6	7					
		0	0	1	6	- 24	60	120	210	(7 marks)				
	y: 0 0 1 6 24 60 120 210 (7 marks) c) Perform the computation 0.0218×179 (i) Exactly													
	(ii) us	ing thre	e truncat	ing arith	nmetic									
	(iii) Using three digit rounding arithmetic.													
	Comment on the errors generated by (i) and (ii). (7 marks)													
3.	a) Find the di	vided d	ifference	s of $f($	$(x) = x^3 +$	-x+2	for the a	rgument	s 1. 3. 6	. 11. (4 marks)				
	 a) Find the divided differences of f(x) = x³ + x + 2 for the arguments 1, 3, 6, 11. (4 marks) b) Using the Newton's divided formula find f(x) and f=(6) from the values below. 													
	x:	1	2	7	8		(0) 0							
	f(x):	1	5	5	4					(8 marks)				
	c) Apply Newton-Raphson's method, find correct to four decimals the root between 0 and 1 of													

c) Apply Newton-Raphson's method, find correct to four decimals the root between 0 and 1 of the equation $x^3 - 6x + 4 = 0$ Take $x_0 = 0.7$ (8 marks) 4. a) The population increase of a certain town is given below. Find the rate of growth of the population in 1931 and 1971.

Year, x:	1931	1941	1951	1961	1971	
Pop in thousands,y:	40.62	60.80	79.95	104.56	132.65	(10 marks)

b) By Stirling and Bessel method compare the interpolation at x=0.35 from the data 0.1 0.2 0.3 0.4 0.5 0.6 x: f(x): 1.40 1.56 1.76 2.00 2.28 3.18 (10 marks)

- 5. a) Using sin(0.1) = 0.09983 and sin(0.2) = 0.19867 find an approximate value of sin(0.15) by lagrange interpolation. (7 marks)
 - b) Evaluate $I = \int_{0}^{2} \frac{x}{1+x^{2}} dx$ taking a subdivision of 0.25 using

(i) Trapezoidal rule

(ii) Simpsos's rule

(iii) Direct Integration. (13 marks)