KABARAK



UNIVERSITY

#### UNIVERSITY EXAMINATIONS

#### 2008/2009 ACADEMIC YEAR

## FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE AND BACHELOR OF ECONOMICS & MATHEMATICS

COURSE CODE: MATH 314

- COURSE TITLE: NUMERICAL ANALYSIS EXAM
- STREAM: Y3S1
- DAY: MONDAY
- TIME: 11.00 1.00 P.M.
- DATE: 08/12/2008

INSTRUCTIONS TO CANDIDATES:

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

PLEASE TURN OVER

### **QUESTION ONE(30 MARKS)**

(a). In a triangle ABC,  $a = 5 \text{ cm}, c = 15 \text{ cm}, < B = 90^{\circ}$ . Find the possible error in the computed value of A if the errors in a and b are  $\frac{1}{2}$  % and  $\frac{1}{3}$ % respectively. (6 marks)

- (b). Locate the error in the following entries and correct it: 125 132.651
  140. 608 148. 877 157. 464 166.357 175.616 185. 193 195.112
  205.379 216. (5 marks)
- (c). Use the Advancing difference formula to find f(50):

| <b>X</b> : | 15   | 20   | 25   | 30   | 35   |
|------------|------|------|------|------|------|
| f(x):      | 1558 | 1806 | 2094 | 2427 | 2814 |

(5 marks)

- (e). Evaluate:  $(\Delta + \nabla)^2 (x^2 + x + 1)$ , h = 1. (5 marks)
- (f). Use Newton Raphson method to find  $\sqrt{3}$  to six decimal places with  $x_0 = 2.$  (5 marks)
- (g).Estimate the missing term in the following:

| <b>X</b> : | 1 | 2 | 3 | 4 | 5  | 6  | 7   |           |
|------------|---|---|---|---|----|----|-----|-----------|
| y:         | 2 | 4 | 8 | _ | 32 | 64 | 128 | (4 marks) |

## **QUESTION 2 (20 MARKS)**

- (a). Use the iterative mehod to find the real root of the equation  $3x \log_{10} x = 6$  if the root lies in the interval (2, 3). (5 marks)
- (b). Solve the equation  $x^4 x 9 = 0$  by Newton Raphson Method. (5 marks)
- (c). Show that the iterative formula for finding the reciprocal of n is

$$x_{i+1} = x_i(2 - nx_i)$$
 and hence find the value of  $\frac{1}{31}$ . (5 marks)

(d). Solve the following equation by Regula Falsi method:  $x^3 + x - 1 = 0$ .

(5 marks)

## **QUESTION 3 (20 MARKS)**

a. Use Bessel's formula to find f(0.36) from the following table:

|   | <b>X</b> : | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2                             | 0.3                                                | 0.4                        | 0.5   | 0.6   |
|---|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------|----------------------------|-------|-------|
|   | y:         | 1.172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.008                           | 0.878                                              | 0.782                      | 0.720 | 0.692 |
| [ | y =        | $=\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}+\frac{y_0+y_1}{2}$ | $v\Delta y_0 + (\frac{v^2}{2})$ | $(\frac{1}{4})\frac{\Delta^2 y_{-1} + \lambda}{2}$ | $\frac{\Delta^2 y_0}{2} +$ |       | ]     |

(5 marks)

b. Using the table below, evaluate  $f^{11}(4)$  using Stirling's formula:

 $y = y_0 + u \frac{\Delta y_{-1} + \Delta y_0}{2} + \frac{u^2}{2} \Delta^2 y_{-1} + \frac{u(u^2 - 1)}{3!} \frac{\Delta^3 y_{-2} + \Delta^3 y_{-1}}{2} + \frac{u^2(u^2 - 1)}{4!} \Delta^4 y_{-2} + \dots - \dots - \dots$ 2.4 2.8 3.2 3.6 4.0 Х: 4.4 4.8 0.84391 f(x): 0.18322 0.61245 0.73205 0.94936 0.34164 0.48324 (5 marks)

(c). Given the following tabulated function:

| <b>X</b> :   | 1.0 | 2.0   | 3.0   | 4.0    |     |
|--------------|-----|-------|-------|--------|-----|
| f(x)         | 150 | 36.75 | 17.33 | 9.19   |     |
| Find f(5.0). |     |       |       | (5 mar | ks) |

(d). Use the Trapezoidal rule to find  $\int_{1}^{2} \frac{1}{1+x} dx$ , h = 0.1. Compare with exact

solution.

(5 marks)

# QUESTION 4 (20 MARKS)

(a). Calculate a fourth divided difference for the following values:

| <b>x</b> : | 0 | 1  | 2  | 4  | 5 |           |
|------------|---|----|----|----|---|-----------|
| y:         | 0 | 16 | 48 | 88 | 0 | (4 marks) |

(b). Use Lagrange's interpolation formula to find f(4.3) for the following:

| X:    | 0 | 1.0   | 2.0    | 3.8   |           |
|-------|---|-------|--------|-------|-----------|
| f(x): | 0 | 0.569 | 0. 791 | 0.224 | (5 marks) |

(c). Find the polynomial of degree three which takes the values prescribed below using Lagrange's method

| (6 marks) | 4 | 2 | 1 | 0 | x |
|-----------|---|---|---|---|---|
| (o maixs  | 5 | 2 | 1 | 1 | у |

(d). Evaluate:  $(2\Delta + 3)(E + 2)(3x^2 + 2)$  where h =1 (5 marks)

# **QUESTION 5 (20 MARKS)**

(a). Prepare a forward difference table for the following function:

| Х    | 1 | 2  | 3  | 4   | 5   |
|------|---|----|----|-----|-----|
| f(x) | 6 | 10 | 46 | 138 | 430 |

assuming the function is a polynomial, interpolate for f(4.31) using forward difference interpolation with x=4 as starting point.

(5 marks)

(b). Given the following function values:

| Х      | 0      | 0.5   | 1.0   | 1.5   | 2.0    | 2.5       |
|--------|--------|-------|-------|-------|--------|-----------|
| f(x)   | 2.014  | 3.221 | 4.701 | 7.710 | 13.594 | 23.580    |
| Find f | (3.0). |       |       |       |        | (5 marks) |

(c). Prove:

(*i*)  $E^{\frac{1}{2}} = \mu + \frac{1}{2}\delta$  and  $E^{-\frac{1}{2}} = \mu - \frac{1}{2}\delta$ (*ii*)  $\mu\delta = \frac{1}{2}\Delta E^{-1} + \frac{1}{2}\Delta$ (*iii*)  $\Delta = \frac{1}{2}\delta^{2} + \delta\sqrt{1 + \frac{1}{4}\delta^{2}}$ 

(10 marks)