KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: MATH 314

COURSE TITLE: NUMERICAL ANALYSIS

- STREAM: Y431
- DAY: TUESDAY
- TIME: 9.00 11.00 A.M.
- DATE: 08/12/2009

INSTRUCTIONS:

Attempt question \underline{ONE} and any other \underline{TWO} questions

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) Evaluate

$$(\Delta + \nabla)^2 (x^2 + 2x - 1)$$
 given that $n = 1$ (5 marks)

(b) Use the Newton divided interpolation Formulae to find a polynomial that interpolates the points,

f(0) = 5 f(2) = 13 f(3) = 26 (5 marks)

(c) Apply Simpsons $\frac{1}{3}$ rule to evaluate the approximate value of;

$$\int_0^1 \frac{dx}{1+x^2} \text{ using 4 intervals.}$$
 (5 marks)

- (d) Use Picard's method to find the power series solution for $y^1 = y - x^2$ y(0) = 1 (5 marks)
- (e) Locate and correct the error in the following data; -5, -4, 1, 10, 28, 40, 61, 86, 115 (5 marks)
- (f) Find the Eigen values and vectors of, $A = \begin{bmatrix} 5 & -2 \\ -2 & 2 \end{bmatrix}$ (5 marks)

QUESTION TWO (20 MARKS)

(a) Show that;

(i)
$$\Delta[f(x)g(x)] = f(x+n) \Delta g(x) + g(x) \Delta f(x)$$

(ii)
$$\Delta \left[\frac{-f(x)}{g(x)} \right] = \frac{g(x) \Delta f(x) - f(x) \Delta g(x)}{g(x+n) g(x)}$$

Hence solve,

(iii)
$$\Delta[x \cos x]$$

(iv) $\Delta\left[\frac{\log x}{x^2}\right]$ (10 marks)

(b) Prove the following;

(i)
$$1 - \nabla = E^{-1}$$

(ii) $\nabla = \Delta E^{-1}$
Hence find;
 $\left(\frac{\Delta^2}{E}\right) x^4$ and $E^{-1} \Delta [x^3 + x^2]$ (10 marks)

QUESTION THREE (20 MARKS)

(a) Derive the Newton Forward Interpolation Formulae and use it to find f(5) given that

$$f(0) = 1$$
 $f(2) = 1$ $f(4) = 65$ and $f(6) = 289$ (10 marks)

(b) Use Lagrange method to find a polynomial that interpolates, the points.

$$[-4, 1245], [-1, 33] [0, 5] [2, 9] and [5, 1335]$$
 (10 marks)

QUESTION FOUR (20 MARKS)

(a) Given the following Data;

x	3	5	11	27	34
f(x)	-13	23	899	17315	35606

Find
$$f^{1}(10)$$

(7 marks)

(b) Derive the Simpsons $\frac{3^{th}}{8}$ rule hence use it to evaluate;

$$\int_0^6 \frac{dx}{1+x^2}$$
 using 6 sub-intervals.

(c)

(d) (13 marks)

QUESTION FIVE (20 MARKS)

- (a) Determine the value of y when x = 0.1 given that $\frac{dy}{dx} = x^2 + y$, y(0) = 1, n = 0.05 using the modified Euler Formulae. (10 marks)
- (b) Find all the Eigen values and vectors of the matrix defined by;

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
(10 marks)