KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/20010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 314

COURSE TITLE: NUMERICAL ANALYSIS I

- STREAM: SESSION VII
- DAY: SATURDAY
- TIME: 9.00 11.00 A.M.
- DATE: 14/08/2010

INSTRUCTIONS:

> Answer question **ONE** and any other **TWO** Questions

PLEASE TURNOVER

Page 2 of 4

Time (t) 0 5 10 15 20 25 30 35 Speed (v) 30 24 19.5 16 13.6 8.5 11.7 10.0

Using Simpson's $\frac{1}{3}$ rule, determine the distance moved by the train in 40 seconds. (5 mks)

(e) When a train is moving at 30m/sec steam is shut off and brakes are applied. The speed

QUESTION TWO (20 MARKS)

(a) Using Newton-Raphson method, solve for a root of the equations starting from the initial approximation $x_0 = y_0 = 1$, $x^3 - 3xy^2 + 1 = 0$ and $3x^2y - y^3 = 0$ (10 mks)

(a) (i) Given that x = 3.141592 and $\bar{x} = 3.14$, find the relative error in the approximation. (2 mks)

(ii) Show that
$$\Delta^3 y_0 = y_3 - 3y_2 + 3y_1 - y_0$$
 (5 mks)

- (b) Using Newton's backward formula, find the polynomial of degree three passing through (3, 6) (4, 24) (5, 60) and (6, 120) (7 mks)
- (c) Find the value of $\int_{1}^{5} log_{10} x dx$, taking 8 sub intervals correct to four decimal places by Trapezoidal Rule (6 mks)
- (d) The following are the measurements t made on a curve recorded by the oscillograph representing a change of current I due to a change in the conditions of an electric current

t	1.2	2.0	2.5	3.0
Ι	1.36	0.58	0.34	0.20

Using Lagrange's formula find I at t = 1.6

of the train per second after t seconds is given by

QUESTION ONE (30 MARKS) COMPULSORY

ting a change of current \mathbf{I} due to a change in the conditions of an elec

(5 mks)

40

7.0

(b) Determine $f^1(6)$ from the following table

x	0	2	3	4	7	9
f(x)	4	26	58	112	466	922

(Note: intervals are unequal)

(5 mks)

(c) Given that $y = x^3 + x^2 - 2x + 1$. Determine the values of y for $0 \le x \le 5$ and from a difference table. Determine the value of y at x = 6 by extending the table and verify that the same value is obtained by substitution. (5 mks)

QUESTION THREE (20 MARKS)

(a) The population of a town is as follows

Year (x)	1941	1951	1961	1971	1981	1991
Population (y)	20	24	29	36	46	51

Estimate the population increase during the period 1946 to 1976 [Apply Newtons forward and backward formula respectively] (10 mks)

(b) Given the following table, find y (35) by using stirling's formula

x	20	30	40	50	
у	512	439	346	243	
	·		•	•	(5 mks

(c) Find the gradient of the road at the middle point of the elevation above a datum line of seven points of a road which are given below

Х	0	300	600	900	1200	1500	1800
у	135	149	157	183	201	205	193

(10 mks)

QUESTION FOUR (20 MARKS)

(a) Solve the Equations $x^2 + y - 11 = 0$ and $y^2 + x - 7 = 0$ starting with the initial values $x_0 = 3.5$ and $y_0 = -1.5$. (Perform two iterations) (4 mks)

(b) Obtain the value of $f^1(0.04)$ using Bessel's formula given the table below.

x	0.01	0.02	0.03	0.04	0.05	0.06
f(x)	0.1023	0.1047	0.1071	0.1096	0.1122	0.1148

Bessels formula: $y^{1}(x) = \frac{1}{h} \left[\Delta y_{0} + \frac{2u-1}{4} \left(\Delta^{2} y_{-1} + \Delta^{2} y_{0} \right) + \frac{(3u^{2} - 3u + \frac{1}{2})}{6} \Delta^{3} y_{-1} \right]$ (10 mks)

QUESTION FIVE (20 MARKS)

(a) Prove
$$D = \frac{1}{2}\delta^2 + f\sqrt{1 + \frac{f^2}{4}}$$
 (2 mks)

(b) Find the 7th term of the sequence

(c) Find the missing value in the following table

x	0	1	2	3	4
у	1	2	4	-	16

(5 mks)

(d) From the following table of half-yearly premium for policies maturing at different ages, estimate the premium for a policy maturing at age 46. (5 mks)

Age (x)	45	50	55	60	65
Premium (<i>y</i>)	114.84	96.16	83.32	74.48	68.48