

KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 314

COURSE TITLE: NUMERICAL ANALYSIS I

- STREAM: Y3S1
- DAY: FRIDAY
- TIME: 9.00 11.00 A.M.
- DATE: 10/12/2010

INSTRUCTIONS:

Answer question **ONE** and any other **TWO** Questions

PLEASE TURNOVER

QUESTION ONE (30 MARKS)

- a) Explain each of the following
 - i) Numerical analysis
 - ii) Truncation Error
- b) Given that $x = 13.2 \pm 0.05$, $y = 14.3 \pm 0.08$, $z = 9.2 \pm 0.06$, find the percentage error in $\frac{x^2 y^3}{z^4}$

(2 marks)

(6 marks)

(5 marks)

(4 marks)

- c) Find the parabola of the form $y = ax^2 + bx + c$ passing through the point (0,0),(1,1) and (2,20)
- d) Find the cubic polynomial which interpolates the following data

Х	0	1	2	3		
F(x)	1	0	2	10		
Hence find f(4).						

- e) Using the Simpson's third rule for n=6, evaluate $\int_{-\pi}^{6} \frac{1}{x^2 + 1} dx$ (4 marks)
- f) Let $f(x) = x^2 a$. show that the Newton-Raphson method leads to the recurrence $x_{n+1} = \frac{1}{2}(x_n + \frac{a}{x})$ (5 marks)

g) Evaluate
$$\Delta(xe^x)$$
 (3 marks)

QUESTION TWO (20 MARKS)

- a) Define the finite difference operators $E, \Delta, \nabla, \delta, \mu$. Prove that $\Delta = E 1$. (8 marks)
- b) From the table below of half-yearly premium for policies maturing at different ages estimate the premium for policies maturing at age 46 and 63. (12 marks)

Age x	45	50	55	60	65
Premium	114.84	96.16	83.32	74.48	68.48

QUESTION THREE (20 MARKS)

a) The table below gives the production cost c(t) in KSh of producing of a certain computer component.

Х	1	2	3	4	5	6	7	8	9	10	11
C(x	0.08	0.31	0.56	0.83	1.12	1.41	1.76	2.11	2.48	2.87	3.28
)	2	2	2	2	2	4	2	2	2	2	2

If c(x) is a polynomial of degree 2 and c(6) is in error, correct the error in this data. Hence determine a polynomial appropriate to approximate data. (10 marks)

b) Use Lagrange's formula to fit a polynomial to the data

X:	-1	0	2	3	
Y:	-8	3	1	12. Hence find $y(1)$.	(10 marks)

QUESTION FOUR (20 MARKS)

- a) Use the Newton-divided interpolation formula to find the polynomial that interpolates the following points. f(0)=3, f(2)=27, f(5)=453 f(9)=2757 (5 marks)
- b) From the following table find the value of x for which f(x) is a maximum, also find the maximum value. (10 marks)

X:	60	75	90	105	120
F(x)	28.2	38.2	43.2	40.9	37.7

c) Using Newton-Raphson method, find correct to four decimals the root between 0 and 1 of the equation $x^3 - 6x + 4 = 0$. [Take $x_0 = 0.7$] (5 marks)

QUESTION FIVE (20 MARKS)

- a) Outline the bisection/having method. Hence ysing your outline perform three iterations to estimate a root of $x^3 9x + 1 = 0$. [Take (2,3)as your initial interval] (10 marks)
- b) Estimate using (i) Trapezoidal Rule

(ii) Simpson's third Rule, the value of $\int_{0}^{1.2} e^{x^2} dx$ using n = 6 to 3d.p

(10 marks)