KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS 2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE COURSE CODE: MATH 314

COURSE TITLE: NUMERICAL ANALYSIS

 STREAM:
 Y3S1

 DAY:
 MONDAY

 TIME:
 9.00 - 11.00 A.M.

 DATE:
 29/11/2010

INSTRUCTIONS:

1.Question **ONE** is compulsory.

2. Attempt question **ONE** and any other **TWO**

PLEASE TURNOVER

QUESTION ONE (30 MARKS) COMPULSORY

(a) (i) Given that x = 3.141592 and $\overline{x} = 3.14$, find the relative error in the approximation. (2 mks)

(ii) Show that
$$\Delta^3 y_0 = y_3 - 3y_2 + 3y_1 - y_0$$
 (5 mks)

- (b) Using Newton's backward formula, find the polynomial of degree three passing through
 - (3, 6) (4, 24) (5, 60) and (6, 120) (7 mks)
- (c) Find the value of $\int_{1}^{5} log_{10} x dx$, taking 8 sub intervals correct to four decimal places by Trapezoidal Rule (6 mks)
- (d) The following are the measurements \mathbf{t} made on a curve recorded by the oscillograph representing a change of current I due to a change in the conditions of an electric current

t	1.2	2.0	2.5	3.0
Ι	1.36	0.58	0.34	0.20

Using Lagrange's formula find I at t = 1.6

(e) When a train is moving at 30m/sec steam is shut off and brakes are applied. The speed of the train per second after t seconds is given by

Time (t)	0	5	10	15	20	25	30	35	40
Speed (v)	30	24	19.5	16	13.6	11.7	10.0	8.5	7.0

Using Simpson's $\frac{1}{3}$ rule, determine the distance moved by the train in 40 seconds. (5 mks)

(5 mks)

QUESTION TWO (20 MARKS)

(a) Using Newton-Raphson method, solve for a root of the equations starting from the initial approximation $x_0 = y_0 = 1$. $x^3 - 3xy^2 + 1 = 0$ and $3x^2y - y^3 = 0$ (10 mks)

(b) Determine $f^{1}(6)$ from the following table

x	0	2	3	4	7	9
f(x)	4	26	58	112	466	922

(Note: intervals are unequal)

(c) Given that $y = x^2 + x^2 - 2x + 1$. Determine the values of y for $0 \le x \le 5$ and from a difference table. Determine the value of y at x = 6 by extending the table and verify that the same value is obtained by substitution. (5 mks)

QUESTION THREE (20 MARKS)

(a) The population of a town is as follows

Year (x)	1941	1951	1961	1971	1981	1991
Population (V)	20	24	29	36	46	51

Estimate the population increase during the period 1946 to 1976 [Apply Newtons forward and backward formula respectively] (10 mks)

(b) Given the following table, find \mathcal{Y} (35) by using stirling's formula

x	20	30	40	50
у	512	439	346	243

Find the gradient of the road at the middle point of the elevation above a datum line of seven points of

a road which are given below

(c)

X	0	300	600	900	1200	1500	1800
у	135	149	157	183	201	205	193

(5 mks)

(5 mks)

(10 mks)

Page 4 of 4

QUESTION FOUR (20 MARKS)

X

f(x)

0.01

0.1023

(a) Solve the Equations $x^2 + y - 11 = 0$ and $y^2 + x - 7 = 0$ starting with the initial values $x_0 = 3.5$ and $y_0 = -1.5$. (Perform two iterations) (4 mks)

0.03

0.1071

Bessels formula: $y^{1}(x) = \frac{1}{\hbar} \left[\Delta y_{0} + \frac{2u - 1}{4} \left(\Delta^{2} y_{-1} + \Delta^{2} y_{0} \right) + \frac{\left(3u^{2} - 3u + \frac{1}{2} \right)}{6} \right]$

0.04

0.1096

0.05

0.1122

(b) Obtain the value of $f^{1}(0.04)$ using Bessel's formula given the table below.

0.02

0.1047

QUESTION FIVE (20 MARKS)	

- (a) Prove $D = 1/2 (^{1}2 + f\sqrt{(1 + f^{1}2/4)})$
- (b) Find the 7th term of the sequence
 - 2 9 28 65 126 217
- (c) Find the missing value in the following table

x	0	1	2	3	4
у	1	2	4	-	16

(5 mks)

(d) From the following table of half-yearly premium for policies maturing at different ages, estimate the premium for a policy maturing at age 46. (5 mks)

Age (x)	45	50	55	60	65
Premium (y)	114.84	96.16	83.32	74.48	68.48

(2 mks)

(8 mks)

(10 mks)

0.06

0.1148