STREAM:
Y3S1
DAY:
MONDAY
TIME:
9.00-11.00 A.M.

DATE:
29/11/2010

INSTRUCTIONS:

1.Question ONE is compulsory.
2. Attempt question ONE and any other TWO

QUESTION ONE (30 MARKS) COMPULSORY

(a) (i) Given that $x=3.141592$ and $\bar{x}=3.14$, find the relative error in the approximation.
(2 mks)
(ii) Show that $\Delta^{2} y_{0}=y_{3}-3 y_{2}+3 y_{1}-y_{0}$
(5 mks)
(b) Using Newton's backward formula, find the polynomial of degree three passing through $(3,6)(4,24)(5,60)$ and $(6,120)$
(7 mks)
(c) Find the value of $\int_{1}^{\overline{3}} \log _{10} x d x$, taking 8 sub intervals correct to four decimal places by Trapezoidal Rule (6 mks)
(d) The following are the measurements \mathbf{t} made on a curve recorded by the oscillograph representing a change of current \mathbf{I} due to a change in the conditions of an electric current

t	1.2	2.0	2.5	3.0
I	1.36	0.58	0.34	0.20

Using Lagrange's formula find I at $\mathrm{t}=1.6$
(5 mks)
(e) When a train is moving at $30 \mathrm{~m} / \mathrm{sec}$ steam is shut off and brakes are applied. The speed of the train per second after t seconds is given by

Time (t)	0	5	10	15	20	25	30	35	40
Speed (v)	30	24	19.5	16	13.6	11.7	10.0	8.5	7.0

Using Simpson's ${ }^{1 / 3}$ rule, determine the distance moved by the train in 40 seconds. ($\mathbf{5} \mathbf{~ m k s}$)

QUESTION TWO (20 MARKS)

(a) Using Newton-Raphson method, solve for a root of the equations starting from the initial approximation $x_{0}=y_{0}=1, \quad x^{2}-3 x y^{2}+1=0 \quad$ and $3 x^{2} y-y^{2}=0$
(10 mks)
(b) Determine $f^{1}(6)$ from the following table

x	0	2	3	4	7	9
$f(x)$	4	26	58	112	466	922

(Note: intervals are unequal)
(5 mks)
(c) Given that $y=x^{3}+x^{2}-2 x+1$. Determine the values of y for $0 \leq x \leq 5$ and from a difference table. Determine the value of y at $x=6$ by extending the table and verify that the same value is obtained by substitution.

QUESTION THREE (20 MARKS)

(a) The population of a town is as follows

Year (x)	1941	1951	1961	1971	1981	1991
Population (\boldsymbol{y})	20	24	29	36	46	51

Estimate the population increase during the period 1946 to 1976 [Apply Newtons forward and backward formula respectively]
(10 mks)
(b) Given the following table, find y (35) by using stirling's formula

x	20	30	40	50
y	512	439	346	243

Find the gradient of the road at the middle point of the elevation above a datum line of seven points of a road which are given below
(10 mks)
(c)

X	0	300	600	900	1200	1500	1800
y	135	149	157	183	201	205	193

QUESTION FOUR (20 MARKS)

(a) Solve the Equations $x^{2}+y-11=0$ and $y^{2}+x-7=0$ starting with the initial values $x_{0}=3.5$ and $y_{0}=-1.5$. (Perform two iterations)
(b) Obtain the value of $f^{1}(0.04)$ using Bessel's formula given the table below.

x	0.01	0.02	0.03	0.04	0.05	0.06
$f(x)$	0.1023	0.1047	0.1071	0.1096	0.1122	0.1148

Bessels formula: $y^{1}(x)=1 / h\left[\Delta y_{0}+\frac{2 u-1}{4}\left(\Delta^{2} y_{-1}+\Delta^{2} y_{0}\right)+\frac{\left(3 u^{2}-3 u+1 / 2\right)}{6} \Delta^{\mathbf{2}} y_{-1}\right]$
(10 mks)

QUESTION FIVE (20 MARKS)

(a) Prove $D=1 / 2\left(^{\mathrm{t}} 2+f \sqrt{\left(1+f^{\mathrm{t}} 2 / 4\right)}\right.$
(2 mks)
(b) Find the $7^{\text {th }}$ term of the sequence

$$
\begin{array}{llllll}
2 & 9 & 28 & 65 & 126 & 217
\end{array}
$$

(c) Find the missing value in the following table

x	0	1	2	3	4
y	1	2	4	-	16

(5 mks)
(d) From the following table of half-yearly premium for policies maturing at different ages, estimate the premium for a policy maturing at age 46 .
(5 mks)

Age (x)	45	50	55	60	65
Premium (v)	114.84	96.16	83.32	74.48	68.48

