KABARAK

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION

SCIENCE

- COURSE CODE: MATH 314
- COURSE TITLE: NUMERICAL ANALYSIS 1
- STREAM: SESSION VII & IX
- DAY: MONDAY
- TIME: 2.00 4.00 P.M.
- DATE: 10/08/2009

INSTRUCTIONS:

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

PLEASE TURN OVER

QUESTION 1 (30 MARKS)

a.		Evalua (i) (ii)	the $I = \int_{0}^{6} \frac{1}{1+x}$ Trapezoidal Simpson's r	rule	n = 6 usin	g:	(5 m	arks)
b.		•) is a polynomic bound of the second se	•			ing table giv	es the values of x
	x:	0	1	2	3	4	5	6
	y:	4	1 10	30	75	160	294	490
	•						(5 mar	·ks)
c.		Solve	$\left(\frac{\Delta^2}{F}\right) \mathbf{x}^3$				(4 m	arks)
d.			E ne sixth term	of the sear	ience 8 1'	2 19 29 4	.2	
u.		i ind ti		or the sequ	<i>ience</i> 0, 12	-, 17, 27, 4	2,	
							(5 marl	ks)
e.			llowing table tion in the ye	0			•	
	Y	ear	1941	195	1 19	61	1971	
	Poj	pulatior	n(in millions)	352	403	5 4	73	554
								(5 marks)
f.			ne first and se Stirling's form		vative of th	ne function	tabulated be	show at $x = 0.6$
	x:	0.4	0.5		0.6	0.7	0.8	
	y:	1.5836	6 1.797	4 2.0	0442	2.3275		
							(6 mar	·ks)

QUESTION TWO (20 MARKS)

- a. Make a divided difference table of $f(x) = x^3 + x + 2$ for the arguments: 1 3 6 11 (4 marks)
- b. Find the formula for calculating the absolute error and relative error of $x_1x_2x_3 = - - x_n$ (4 marks)

c.	The following table gives the values of y which a polynomial of degree 5. It is known that $y = f(3)$ has an error. Correct the error.								
x:	0	1	2	3	4	5	6		
y:	1	2	33	254	1025	3126	7777		
							(4 mark	(s)	
d.	d. Find the values of y at $x = 21$ and $x = 28$ from the following data:								
	x:	20	23	20		29			
	y:	3420	3907	438	34	4848			

(8 marks)

QUESTION THREE (20 MARKS)

- a. Use Newton's Backward formula to find y(-1) if y(0) = 2, y(1) = 9, y(2) = 28, y(3) = 65, y(4) = 126, y(5) = 217. (4 marks)
- b. Find f(x) from the table below. Also find f(7).

x: 0	1	2	3	4	5	6
f(x): -1	3	19	53	111	199	323
						(6 marks)

c. Solve the equation $x^3 + x^2 - 1 = 0$ for the positive root by iteration method. (5 marks)

d. Find a positive root of $xe^x = 2$ by the Regula Falsi method

e. Use Netwon Raphson method to find the root between 0 and 1 of $x^3 = 6x - 4$ correct to five decimal places. (5 marks)

QUESTION 4 (20 MARKS)

a. Prove that:

$\Delta [f(x)g(x)] = f(x+h) \Delta g(x) + g(x) \Delta f(x)$	(3 marks)
Hence evaluate: $\Delta e^{2x} \log 3x$	(3 marks)

b. Evaluate:

$$(\nabla + \Delta)^2 (x^2 + x + 1)$$
 (5 marks)

c.	Proof that	(4 marks)					
d.	From the f	35					
	y:	1.558	1.806	2.094	2.427	2.814	(5 marks)

QUESTION 5 (20 MARKS)

a.	Make a divided difference table from the following data:						
	x:	-2	0	3	5	7	8
	y:	-792	108	-72	48	-144	-252
							(4 marks)

b. The population of a certain town is given below. Find the growth rate of the population in 1931, 1941, 1961 and 1971.

x(Year):	1931	1941	1951	1961	1971
y(Population					
Thousands):	40.62	60.80	79.95	103.56	132.65

(12 marks)

c. Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$, using Trapezoidal rule with h = 0.2. Hence obtain an appropriate

value of π . can you use other formulae in this case?.

(4 marks)