KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS
2010/2011 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE
COURSE CODE: MATH 314
COURSE TITLE: NUMERICAL ANALYSIS I
STREAM: SESSION V \& VII
DAY:
THURSDAY
TIME:
9.00-11.00 A.M.

DATE:
14/04/2011

INSTRUCTIONS:

1.Question ONE is compulsory.
2. Attempt question ONE and any other TWO

QUESTION ONE (30 MARKS) COMPULSORY

(a) (i) Given that $x=3.141592$ and $\bar{x}=3.14$, find the relative error in the approximation.
(ii) Derive a relation between the operators E and δ
(b) Find $f(x)$ from the table below hence $f(7)$

$x:$	0	1	2	3	4	5	6
$f(x):$	-1	3	19	53	111	199	323

(c) Find the value of $\int_{1}^{5} \log _{10} x d x$, taking 8 sub intervals correct to four decimal places by Trapezoidal Rule (6 marks)
(d) The following are the measurements \mathbf{t} made on a curve recorded by the oscillograph representing a change of current \mathbf{I} due to a change in the conditions of an electric current

t	1.2	2.0	2.5	3.0
I	1.36	0.58	0.34	0.20

Using Lagrange's formula find I at $\mathrm{t}=1.6$
(5 marks)
(e) When a train is moving at $30 \mathrm{~m} / \mathrm{sec}$ steam is shut off and brakes are applied. The speed of the train per second after t seconds is given by

Time (t)	0	5	10	15	20	25	30	35	40
Speed (v)	30	24	19.5	16	13.6	11.7	10.0	8.5	7.0

Using Simpson's $1 / 3$ rule, determine the distance moved by the train in 40 seconds. (7 marks)

QUESTION TWO (20 MARKS)

(a) Find and correct the error in the values of y shown in the table below given that $y=f(x)$ is a polynomial of degree 3 . (10 marks)

x	0	1	2	3	4	5	6
y	4	10	30	75	160	294	490

(b) Determine $f^{1}(6)$ from the following table

x	0	2	3	4	7	9
$f(x)$	4	26	58	112	466	922

(Note: intervals are unequal)
(c) Given that $y=x^{3}+x^{2}-2 x+1$ determine the values of y for $0 \leq x \leq 5$ and using a difference table determine the value of y at $x=6$ by extending the table and verify that the same value is obtained by substitution.

QUESTION THREE (20 MARKS)

(a) Derive the Newton - Gregory interpolation formula for equal intervals. (10 marks)
(b) The population of a town is as follows

Year (x)	1941	1951	1961	1971	1981	1991
Population (y)	20	24	29	36	46	51

Estimate the population increase during the period 1946 to 1976 [Apply Newton's forward and backward formula respectively]

QUESTION FOUR (20 MARKS)

(a) Given the following table, find y (35) by using stirling's formula

x	20	30	40	50
y	512	439	346	243

(b) Obtain the value of $f^{1}(0.04)$ using Bessel's formula given the table below.

x	0.01	0.02	0.03	0.04	0.05	0.06
$f(x)$	0.1023	0.1047	0.1071	0.1096	0.1122	0.1148

Bessels formula: $y^{1}(x)=1 / h\left[\Delta y_{0}+\frac{2 u-1}{4}\left(\Delta^{2} y_{-1}+\Delta^{2} y_{0}\right)+\frac{\left(3 u^{2}-3 u+1 / 2\right)}{6} \Delta^{3} y_{-1}\right]$ (10 mks)

QUESTION FIVE (20 MARKS)

(a) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ with subdivision of $h=0.2$ using
(i) Trapezoidal rule
(ii) Simpson's $\frac{1}{3}$ rule
(iii)Direct integration [exact solution]. Estimate the error involved in each case. (12 marks)
(b) Find the missing value in the following table

x	0	1	2	3	4
y	1	2	4	-	16

(4 marks)
(c) From the following table of half-yearly premium for policies maturing at different ages, estimate the premium for a policy maturing at age 46.

Age (x)	45	50	55	60	65
Premium (γ)	114.84	96.16	83.32	74.48	68.48

