KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 314

COURSE TITLE: NUMERICAL ANALYSIS I

- STREAM: SESSION V & VII
- DAY: THURSDAY
- TIME: 9.00 11.00 A.M.
- DATE: 14/04/2011

INSTRUCTIONS:

1.Question **ONE** is compulsory.

2. Attempt question ONE and any other TWO

PLEASE TURN OVER

QUESTION ONE (30 MARKS) COMPULSORY

(a) (i) C	Given that X	= 3.1415	592 and	$\overline{x} = 3.14,$	find the	relative ei	ror in the	e approx	ximation. (2 marks)
(ii) I	Derive a relat	tion betw	een the	operators	E and δ				(3 marks)
(b) Find	f(x) from	the table	below h	ence $f(7)$)				(7 marks)
	<i>x</i> :	0	1	2	3	4 111	5	6	
	f(x):	- 1	3	19	53	111	199	323	
(c) Find	the value of	$\int_{1}^{5} log_{10}$	xdx, t	aking 8 sı	ıb interva	als correct	t to four a	lecimal	places
by T	Trapezoidal I	Rule							(6 marks)
(d) The	following ar	e the me	asureme	nts t mad	e on a cu	rve record	ded by th	e oscillo	oranh

(d) The following are the measurements t made on a curve recorded by the oscillograph representing a change of current I due to a change in the conditions of an electric current

t	1.2	2.0	2.5	3.0
Ι	1.36	0.58	0.34	0.20

Using Lagrange's formula find I at t = 1.6

(5 marks)

(e) When a train is moving at 30m/sec steam is shut off and brakes are applied. The speed of the train per second after t seconds is given by

Time (t)	0	5	10	15	20	25	30	35	40
Speed (v)	30	24	19.5	16	13.6	11.7	10.0	8.5	7.0

Using Simpson's $\frac{1}{3}$ rule, determine the distance moved by the train in 40 seconds. (7 marks)

QUESTION TWO (20 MARKS)

(a) Find and correct the error in the values of y shown in the table below given that y = f(x) is a polynomial of degree 3. (10 marks)

Х	0	1	2	3	4	5	6
У	4	10	30	75	160	294	490

(b) Determine $f^{1}(6)$ from the following table

x	0	2	3	4	7	9
f(x)	4	26	58	112	466	922

(Note: intervals are unequal)

(5 marks)

(c) Given that $y = x^3 + x^2 - 2x + 1$ determine the values of y for $0 \le x \le 5$ and using a difference table determine the value of y at x = 6 by extending the table and verify that the same value is obtained by substitution. (5 marks)

QUESTION THREE (20 MARKS)

- (a) Derive the Newton Gregory interpolation formula for equal intervals. (10 marks)
- (b) The population of a town is as follows

$Y_{ear}(x)$	1941	1951	1961	1971	1981	1991
Population (y)	20	24	29	36	46	51

Estimate the population increase during the period 1946 to 1976 [Apply Newton's forward and backward formula respectively] (10 marks)

QUESTION FOUR (20 MARKS)

x	20	30	40	50
У	512	439	346	243

(a) Given the following table, find y (35) by using stirling's formula

(5 marks)

(b) Obtain the value of $f^{1}(0.04)$ using Bessel's formula given the table below.

	x	0.01	0.02	0.03	0.04	0.05	0.06	
	f (x)	0.1023	0.1047	0.1071	0.1096	0.1122	0.1148	
Bess	sels form	nula: $y^{1}(x)$	$= 1/h \left[\Delta y_0 + \right]$	$\frac{2u-1}{4} \left(\Delta^2\right)$	$y_{-1} + \Delta^2 y_0$	$+\frac{\left(3u^2-3u\right)}{6}$	(10 mks)	³ y ₋₁]

QUESTION FIVE (20 MARKS)

- (a) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ with subdivision of h = 0.2 using
 - (i) Trapezoidal rule
 - (ii) Simpson's $\frac{1}{3}$ rule

(iii)Direct integration [exact solution]. Estimate the error involved in each case. (12 marks)

(b) Find the missing value in the following table

2	ĸ	0	1	2	3	4
	y	1	2	4	-	16

(4 marks)

(c) From the following table of half-yearly premium for policies maturing at different ages, estimate the premium for a policy maturing at age 46. (4 marks)

Age (x)	45	50	55	60	65
Premium (y)	114.84	96.16	83.32	74.48	68.48