

# FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE 

## COURSE CODE: COMP 327

## COURSE TITLE: APPLIED NUMERICAL ANALYSIS

STREAM:

DAY:

TIME:

DATE:
9/12/2008

INSTRUCTIONS:
The paper has three sections
In SECTION A attempt ALL questions
In SECTION B answer ANY TWO In SECTION C answer any ONE.

## SECTION A (answer ALL 30 marks)

1. In performing numerical calculations three types of errors are encountered.

Explain the errors. (6 marks)
2. What is an algorithm? State the five characteristics of a good algorithm. (6 marks)
3. Write an algorithm and $\mathrm{C}++$ program to implement the solution of a quadratic formula. (6 marks)
4. Using Bolzano's/Interhalving method find a real root of the equation $\mathrm{x}^{2}-25=0$. (6 marks)
5. Write a comprehensive Algorithm to demonstrate how the above method can be solved in programming. (6 marks)

## SECTION B (attempt any TWO 20 marks)

6. a) Given the formula for the Regula falsi method as

$$
X_{1}=\frac{\text { af (b)-bf (a) }}{\mathbf{f}(\mathbf{b})-\text { bf }(\mathbf{a})}
$$

Solve for a positive root of $f(x)=x^{3}-\mathbf{4 x + 1}=\mathbf{0}$.
7. Write a $\mathrm{C}++$ object oriented program to implement the above formula. ( 10 marks)
8. State and use the Newton Raphson formula to solve $x^{3}-d=0$ starting with $x_{0}=2.5$ $\mathrm{d}=25$. (10 marks)
9. Compare the iterative methods i.e. Newton-Raphson method, bisection method, falsi position method, secant method. (10 marks)

## SECTION C (answer any one question)

10. Describe the least squares method of fitting a straight line with an algorithm. (20 marks)
11. Solve by Gauss-elimination method, the following system of equations.

$$
\begin{aligned}
& 4.12 \mathrm{x}-9.68 \mathrm{y}+2.01 \mathrm{z}=4.93 \\
& 1.88 \mathrm{x}-4.62 \mathrm{y}+5.50 \mathrm{z}=3.11 \\
& 1.10 \mathrm{x}-0.96 \mathrm{y}+2.72 \mathrm{Z}=4.02 \quad(20 \text { marks })
\end{aligned}
$$

