

KENYA METHODIST UNIVERSITY

END OF 3RD TRIMESTER 2008 EXAMINATIONS

FACULTY	:	ARTS AND SCIENCES
DEPARTMENT	:	COMPUTER INFORMATION SYSTEMS
UNIT CODE	:	MATH 103
UNIT TITLE	:	CALCULUS 1
TIME	:	2 HOURS

Instructions:

• Answer question 1 and any other 2 questions.

Question 1 (30 marks)

a) Find the limit of the following functions:

i)
$$\lim_{x \to 1} \frac{x+2}{\sqrt{x+3-1}}$$
 (2 mks)

ii)
$$\lim_{x \to 1} \frac{x^{3} - 1}{x - 1}$$
 (2 mks)

b) Find the derivative of the indicated functions using the method of differentiation from first principles:

i)
$$y = \frac{1}{x}$$
 (3 mks)
ii) $y = 2x^2 + 3x + 1$ (3 mks)

- c) Given the function $y = x^2 + x + 1$. Find the increment in the argument and the increment in the function if the argument x changed its value from $x_1 = 2$ to $x_2 = 2.5$
- d) Compute the indicated integrals:

- _____

i)
$$\int_{1}^{\frac{1}{3}} \frac{dx}{(4-3x)^2}$$
 (3 mks)

ii)
$$\int \sqrt{(3x+2)^2} \, dx$$
 (4 mks)

e) i) Find the area enclosed by the graphs of the functions:

$$f(x)=2x^2$$
 and $g(x)=2x+4$ (4 mks)

ii) Find the equations of the tangent and normal to the curve $x^3+x^2y+y^3-7 = 0$ at the point x=2, y=3

(6 mks)

Question 2 (20 marks)

- a) The parametric equations of a curve are $x = \frac{3t}{1+t}$, $y = \frac{t^2}{1+t}$. find the equations of the tangent and normal at the point for which t=2. (7 mks)
- b) Sketch the curve whose equation is:

$$y = \frac{(x+2)(x-3)}{x+1}$$
 (12 mks)

c) Show that: $y = a \cos\left(\frac{x}{a}\right)$ satisfies the differential equation $\frac{d^2 y}{dx^2} = \frac{w}{H} \sqrt{1 - \left(\frac{dy}{dx}\right)^2}$

provided that $a = \frac{H}{W}$, where H and w are constants. (8 mks)

(6 mks)

Question 3 (20 marks)

a) Find two positive numbers whose sum is 20 and whose product is as large as possible.

Y =
$$\frac{x^2 - 4}{(x - 2)(x - 3)}$$
, at

$$x=3$$
 (3 mks)

- ii) x=2 (3 mks)iii) Which discontinuity, if any, is removable? (2 mks)
- c) If $y = \cos 2t$ and $x = \sin t$, find the equations of the tangent and normal to the curve at $t = \frac{\pi}{6}$ (6 mks)

Question 4 (20 marks)

a) Find the position of S(t) of a particle moving on a line if $\frac{ds}{dt} = v = 5cos\pi t m/s$ and S(0)=2. Also, find the total distance travelled by the particle from t=0 to t= $\frac{3}{2}$ seconds, and the particles' displacement for this time period. (10 mks)

b) Find the derivative of:
i)
$$f(x) = \frac{x^2 \sqrt{5x+1}}{(3x-2)^3}$$
 (5 mks)

ii)
$$e^{xy} = x^2 + y$$
 (5 mks)

Question 5 (20 marks)

- a) Find the area generated when the arc of the parabola $y^2=8x$ between x=0 and x=2, rotates about the x-axis. (8 mks)
- b) Find the limit of the following functions:

i)
$$\lim_{x \to 2} \left[\frac{2x^2 - 4x}{x - 2} \right]$$
 (4 mks)

ii)
$$\lim_{X \to -\infty} \left[\frac{4x^5 - 3x^3 + 10}{2x^5 + \frac{1}{2}x^4 - 10} \right]$$
(4 mks)

- c) Answer the following, giving reasons:
 - i) If a function is continuous everywhere, does it mean that it is differentiable everywhere? (2 mks)
 - ii) If a function is differentiable everywhere, does it mean that it is continuous everywhere? (2 mks)