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• Answer question 1 and any other 2 questions. 
 
Question 1Question 1Question 1Question 1 (30 marks) (30 marks) (30 marks) (30 marks)    

a) Find the limit of the following functions: 

 i) Lim 
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        (2 mks) 

 

 ii)  Lim 
1

13

−
−

x

x
        (2 mks) 

 

b) Find the derivative of the indicated functions using the method of differentiation from  

first principles: 

 

i) y =     (3 mks) 

ii) y = 2x2 + 3x+1  (3 mks) 

 

c) Given the function y = x2 + x + 1.  Find the increment in the argument and the 

increment in the function if the argument x changed its value from x1 =2 to x2 = 2.5 

 

d) Compute the indicated integrals: 

 i) ∫ −

3
1

1
2)34( x

dx
   (3 mks) 

 

 ii) ∫ + dxx 2)23(   (4 mks) 

e) i) Find the area enclosed by the graphs of the functions: 

 f(x)=2x2 and g(x) = 2x + 4      (4 mks) 
 

ii) Find the equations of the tangent and normal to the curve x3+x2y+y3-7 = 0 at 

the point x=2, y=3 

            (6 mks) 
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Question 2 (20 marks)Question 2 (20 marks)Question 2 (20 marks)Question 2 (20 marks)    

a) The parametric equations of a curve are  x =  , y = .  find the equations of the 

tangent and normal at the point for which t=2.     (7 mks) 

 

b) Sketch the curve whose equation is: 

 

 y =           (12 mks) 

 

c) Show that: y=a cos 
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 provided that a= , where H and w are constants.    (8 mks) 

 

Question 3 (20 marks)Question 3 (20 marks)Question 3 (20 marks)Question 3 (20 marks)    

a) Find two positive numbers whose sum is 20 and whose product is as large as possible. 

            (6 mks) 

b) Test the continuity of the given function at the given points. 

 Y = 
)3)(2(
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 i) x=3          (3 mks) 

 ii) x=2          (3 mks) 

 iii) Which discontinuity, if any, is removable?    (2 mks) 
 

c) If y = cos2t and x = sint, find the equations of the tangent and normal to the curve at 

t =            (6 mks) 

 

Question 4 (20 marks)Question 4 (20 marks)Question 4 (20 marks)Question 4 (20 marks)    

a) Find the position of S(t) of a particle moving on a line if  and 

 S(0)=2. Also, find the total distance travelled by the particle from t=0 to t=  seconds, 

and the particles’ displacement for this time period.    (10 mks) 

 

b) Find the derivative of: 

 i) 
3

2

)23(

15
)(

−
+=

x

xx
xf         (5 mks) 

 

 ii) exy = x2+y         (5 mks) 

 

 

Question 5 (20 marks)Question 5 (20 marks)Question 5 (20 marks)Question 5 (20 marks)    

a) Find the area generated when the arc of the parabola y2=8x between x=0 and x=2, 

rotates about the x-axis.        (8 mks) 

 

b) Find the limit of the following functions: 
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c) Answer the following, giving reasons: 

 i) If a function is continuous everywhere, does it mean that it is differentiable 

everywhere?         (2 mks) 

 ii) If a function is differentiable everywhere, does it mean that it is continuous 

everywhere?         (2 mks) 


