KENYA METHODIST UNIVERSITY

END OF 3RD TRIMESTER 2008 EXAMINATIONS

FACULTY : ARTS AND SCIENCES

DEPARTMENT : COMPUTER INFORMATION SYSTEMS
UNIT CODE : MATH 103
UNIT TITLE : CALCULUS 1
TIME : 2 HOURS

Instructions:

- Answer question 1 and any other 2 questions.

Question 1 (30 marks)

a) Find the limit of the following functions:

$$
\begin{equation*}
\text { i) } \quad \operatorname{Lim}_{x \rightarrow 1} \frac{x+2}{\sqrt{x+3-1}} \tag{2mks}
\end{equation*}
$$

ii) $\operatorname{Lim}_{x \rightarrow 1} \frac{x^{3}-1}{x-1}$
(2 mks)
b) Find the derivative of the indicated functions using the method of differentiation from first principles:
i) $y=\frac{1}{x}$
ii) $y=2 x^{2}+3 x+1$
c) Given the function $y=x^{2}+x+1$. Find the increment in the argument and the increment in the function if the argument x changed its value from $x_{1}=2$ to $x_{2}=2.5$
d) Compute the indicated integrals:
i) $\int_{1}^{\frac{1}{3}} \frac{d x}{(4-3 x)^{2}}$ (3 mks)
ii) $\quad \int \sqrt{(3 x+2)^{2}} d x \quad(4 \mathrm{mks})$
e) i) Find the area enclosed by the graphs of the functions:

$$
\begin{equation*}
f(x)=2 x^{2} \text { and } g(x)=2 x+4 \tag{4mks}
\end{equation*}
$$

ii) Find the equations of the tangent and normal to the curve $x^{3}+x^{2} y+y^{3}-7=0$ at the point $x=2, y=3$

Question 2 (20 marks)

a) The parametric equations of a curve are $x=\frac{3 z}{1+\varepsilon}, y=\frac{t^{z}}{1+z}$. find the equations of the tangent and normal at the point for which $t=2$.
(7 mks)
b) Sketch the curve whose equation is:

$$
\begin{equation*}
y=\frac{(x+2)(x-3)}{x+1} \tag{12mks}
\end{equation*}
$$

c) Show that: $\mathrm{y}=\mathrm{a} \cos \left(\frac{x}{a}\right)$ satisfies the differential equation $\frac{d^{2} y}{d x^{2}}=\frac{w}{H} \sqrt{1-\left(\frac{d y}{d x}\right)^{2}}$
provided that $\mathrm{a}=\frac{H}{w}$, where H and w are constants.
(8 mks)
Question 3 (20 marks)
a) Find two positive numbers whose sum is 20 and whose product is as large as possible.
b) Test the continuity of the given function at the given points.
$\mathrm{Y}=\frac{x^{2}-4}{(x-2)(x-3)}$, at
i) $\quad x=3$
(3 mks)
ii) $\quad x=2$
(3 mks)
iii) Which discontinuity, if any, is removable?
c) If $y=\cos 2 t$ and $x=\operatorname{sint}$, find the equations of the tangent and normal to the curve at $t=\frac{\pi}{6}$

Question 4 (20 marks)

a) Find the position of $S(t)$ of a particle moving on a line if $\frac{d z}{d t}=v=5 \cos \pi t \mathrm{~m} / \mathrm{s}$ and $S(0)=2$. Also, find the total distance travelled by the particle from $t=0$ to $t=\frac{3}{2}$ seconds, and the particles' displacement for this time period.
(10 mks)
b) Find the derivative of:

$$
\begin{align*}
& \text { i) } \quad f(x)=\frac{x^{2} \sqrt{5 x+1}}{(3 x-2)^{3}} \tag{5mks}\\
& \text { ii) } \quad \mathrm{e}^{x y}=x^{2}+y
\end{align*}
$$

Question 5 (20 marks)

a) Find the area generated when the arc of the parabola $y^{2}=8 x$ between $x=0$ and $x=2$, rotates about the x-axis.
b) Find the limit of the following functions:
i) $\operatorname{Lim}_{x \rightarrow 2}\left[\frac{2 x^{2}-4 x}{x-2}\right]$
(4 mks)
ii) $\lim _{x \rightarrow-\infty}\left[\frac{4 x^{5}-3 x^{3}+10}{2 x^{5}+\frac{1}{2} x^{4}-10}\right]$
(4 mks)
c) Answer the following, giving reasons:
i) If a function is continuous everywhere, does it mean that it is differentiable everywhere?
(2 mks)
ii) If a function is differentiable everywhere, does it mean that it is continuous everywhere?
(2 mks)

