

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 312

COURSE TITLE: ORDINARY DIFFERENTIAL EQUATIONS
STREAM: SESSION V

DAY:
TUESDAY

TIME:
2.00 - 4.00 P.M.

DATE:
07/04/2009

INSTRUCTIONS:

Answer question ONE and any other TWO questions

Ouestion One (30 Marks)

a) Given the differential equation $-2+2=$ Odetermine whether $=(\cos +\sin)$ is its complete primitive where and are arbitrary constants.
b) Determine the values of and so that ()$=+\quad+2 \sin$ will satisfy the conditions $(0)=0$ and $(0)=0$.
c) Solve (-4) . =
d) Determine if the functions ()$=\cos$ and ()$=\sin$ are linearly dependent or linearly independent.
e) Solve differential equation $-=\square$.
f) The differential equation for a circuit in which self-inductance and capacitance neutralize each other is $-+-=0$. Find the current as a function of given that is the maximum current and $=0$ when $=0$

Question Two (20 Marks)

a) Solve the following homogeneous linear differential equation

$$
\begin{equation*}
3-+= \tag{8Marks}
\end{equation*}
$$

b) Solve the simultaneous equations,

$$
\begin{array}{ll}
-+ & =0 \ldots \ldots() \\
-- & =0 \ldots \ldots() \tag{6Marks}
\end{array}
$$

c) Solve the initial value problem: $=\sqrt{+1} \quad,(0)=1$.

Question Three (20 Marks)

a) Show that the differential equation $(3+2)+(2-\quad)$ is not exact. Then reduce it to an exact form and solve it.
(12 Marks)
b) Given the differential equation $(+)=2 \cos +3+2+3$. Determine its complementary function and the particular integral, hence write the general solution.
(8 Marks)

Ouestion Four (20 Marks)

a) The mass of a crystalline deposit increases at a rate which is proportional to its mass at that time. The deposit has started around a crystal seed of 5 .
(i) Find an expression of its mass at time .
(4 Marks)
(ii) If in 30 minutes the mass of the deposit increases by 1 , what will be the mass of the deposit after 10 hours.
(4 Marks)
b) Solve the differential equation - $-5-+6=$ Osubject to $\quad(0)=-1$ and

$$
\begin{equation*}
(0)=1 \text {. } \tag{9Marks}
\end{equation*}
$$

c) Use the method of integrating factor to solve the differential equation:

$$
\begin{equation*}
-+-=-3 . \tag{3Marks}
\end{equation*}
$$

Ouestion Five (20 Marks)

a) An electric circuit consists of an inductance of 0.1 , a resistance of 20 and a condenser of capacitance 25
(i) Write down the differential equation for the circuit.
(ii) Find the Charge, and the current, , at any time given that at $=0$

$$
\begin{equation*}
=0.05 \quad, \quad=-=0 . \tag{12Marks}
\end{equation*}
$$

b) Use the method of separation of variables to solve the differential equation

$$
\begin{equation*}
-=(1+\quad) . \tag{5Marks}
\end{equation*}
$$

