KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 312

- COURSE TITLE: ORDINARY DIFFERENTIAL EQUATIONS
- STREAM: SESSION V
- DAY: TUESDAY
- TIME: 2.00 4.00 P.M.
- DATE: 07/04/2009

INSTRUCTIONS:

Answer question **ONE** and any other **TWO** questions

PLEASE TURN OVER

Question One (30 Marks)

a)	Given the differential equation $-2 + 2 = 0$ determine whether	
	= (cos + sin) is its complete primitive where and are arbi	trary
	constants.	(4 Marks)
b)	Determine the values of and so that () = + + 2 sin will	satisfy the
	conditions (0) = 0 and (0) = 0.	(5 Marks)
c)	Solve (-4) . =	(6 Marks)
d)	Determine if the functions () = cos and () = sin are lin	early
	dependent or linearly independent.	(3 Marks)
e)	Solve differential equation — = ——.	(6 Marks)
f)	The differential equation for a circuit in which self-inductance and capacit	tance
	neutralize each other is $- + - = 0$. Find the current as a function of	given that
	is the maximum current and $= 0$ when $= 0$	(6 Marks)

Question Two (20 Marks)

a)	Solve the follow	-+	
	3 + =		(8 Marks)

b) Solve the simultaneous equations,

-+	= 0 ()	(6 Marks)
<u> </u>	= 0 ()	

c) Solve the initial value problem: $= \sqrt{+1}$, (0) = 1. (6 Marks)

<u>Question Three</u> (20 Marks)

a)	Show that the differential equation	(3	+2)	+	(2 –)	=i 9 not
	exact. Then reduce it to an exact for	rm an	d solve it.				(12 Marks)
b)	Given the differential equation (+)	= 2 cos	+ 3	+ 2 + 3	. De	termine its

complementary function and the particular integral, hence write the general solution.

(8 Marks)

<u>Question Four</u> (20 Marks)

- a) The mass of a crystalline deposit increases at a rate which is proportional to its mass at that time. The deposit has started around a crystal seed of 5 .
 - (i) Find an expression of its mass at time . (4 Marks)
 - (ii) If in **30** minutes the mass of the deposit increases by **1**, what will be the mass of the deposit after **10** hours.(4 Marks)
- b) Solve the differential equation ---5-+6 = \bigcirc subject to \bigcirc = -1 and

c) Use the method of integrating factor to solve the differential equation:

Question Five (20 Marks)

- a) An electric circuit consists of an inductance of 0.1, a resistance of 20 h and a condenser of capacitance 25.
 - (i) Write down the differential equation for the circuit. (3 Marks)
 - (ii) Find the Charge, , and the current, , at any time given that at = 0

$$= 0.05$$
 , $=--= 0.$ (12 Marks)

b) Use the method of separation of variables to solve the differential equation

$$-=(1 +)$$
 . (5 Marks)