

FOR THE DEGREE OF BACHELOR OF EDUCATION

 SCIENCE
COURSE CODE: MATH 312

COURSE TITLE: ORDINARY DIFFERENTIAL EQUATION I
STREAM: SESSION III
DAY: THURSDAY
TIME:
9.00-11.00 A.M.

DATE:
12/08/2010

INSTRUCTIONS:

Answer Question ONE and any other TWO Questions

PLEASE TURNOVER

QUESTION ONE: 30 MARKS

a). Define the following terms as used in ordinary differential equations; differential equation, order, linearity and homogeneous.
(8 marks)
b). Test whether the following differential equation are exact and hence solve
$(x+2 y) d x+$ $(2 x+y) d y=0$
c). The population of a country increases at a rate proportional to the current population. If the population doubles in 40 years, in how many years will it triple?
d). Show that the equation $x^{3} y^{\prime \prime \prime}-6 x y^{\prime}+12 y=0$ has three linearly independent solutions each of the form $y=x^{r}$
e). Solve the initial value problem $\left(1+y^{2}\right) d x=\left(1+x^{2}\right) d y=0$

With the initial conditions that when $x=0, y=1$.

QUESTION TWO: 20 MARKS

a). Show that the equation $\left\{\cos \left(t+x^{2}\right)+3 x\right\} d t+\left\{2 x \cos \left(t+x^{2}\right)+3 t\right\} d x=0 \quad$ is an exact equation hence find its solution.
b). Show that $f_{1}(x)=\cos x$ and $f_{2}(x)=\sin x$ are linearly independent solutions of the differential equation $y^{\prime \prime}+y=0$
c). Eliminate the constants to obtain the general equation whose general solution is $y=c_{1} x^{2}+c_{2} e^{2 x} \quad$ where c_{1} and c_{2} are arbitrary constants.
d). By using a suitable integrating factor solve
$\left(3 x^{4} y-1\right) d x+x^{5} d y=0$ when $x=1$, and $y=1$.

QUESTION THREE: 20 MARKS

a). Find the solution of the following initial value problems of the second order

$$
\begin{equation*}
y^{\prime \prime}-5 y^{\prime}+6 y=0, \quad y(0)=1, \quad y^{\prime}(0)=-1 . \tag{5marks}
\end{equation*}
$$

b). The sum of Ksh 5,000 is invested in a bank which pays interest at a rate of 8% per annum compounded continuously. The following separable equation describes the amount
of money at any time t. $\quad \frac{d y}{d x}=\frac{8}{100} y$
Find the amount of money after 25 years.
(6 marks)
c). Show that equation $y=A e^{2 x}+B e^{-x}$ is the solution of the differential equation defined by;

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-2 y=0 \tag{4marks}
\end{equation*}
$$

d). Consider the differential equation $y^{\prime \prime}+4 y=0$. Determine whether $y(x)=k_{1} \sin 2 x+k_{2} \cos 2 x$ is its solution where k_{1} and k_{2} are arbitrary constants.

QUESTION FOUR: 20 MARKS

a). Determine c_{1} and c_{2} so that $y(x)=c_{1} e^{2 x}+c_{2} e^{x}+2 \sin x$ will satisfy the conditions $y(0)=0$ and $y^{\prime}(0)=0$.
(6 marks)
b). Solve $\left(D^{2}-4\right) y=x^{2}$.
(4 marks)
c). Given the differential equation $\left(D^{2}-7 D+10\right) y=e^{2 x}+e^{5 x}$. Determine the complementary function and the particular integral, hence write the general solution.
(6 marks)
d). Use the method of separation of variables to solve the differential equation:

$$
\begin{equation*}
\frac{d y}{d x}=\left(1+y^{2}\right) e^{x} . \tag{4marks}
\end{equation*}
$$

QUESTION FIVE: 20 MARKS

a). Use the method of undetermined coefficient to find P.I of

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 \mathrm{y}=2 \mathrm{x}-40 \cos 2 \mathrm{x} \tag{8marks}
\end{equation*}
$$

b). Solve the differential equation $(x y+1) d x+x(x+4 y-2) d y=0$
c). The following equation is related to biophysical limitations in the study of deep diving $y^{\prime}=A y+B+b e^{-a x}$. Show that the solution is of the form $y=\frac{-B}{A}-\frac{b}{(a+A)} e^{-a x}+c e^{A x}$ where c is an arbitrary constant.

