**KABARAK** 



UNIVERSITY

## **UNIVERSITY EXAMINATIONS**

# 2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION

#### SCIENCE

## COURSE CODE: MATH 410

- COURSE TITLE: ORDINARY DIFFERENTIAL EQUATION I
- STREAM: SESSION VII & VIII
- DAY: TUESDAY
- TIME: 2.00 4.00 P.M.
- DATE: 01/12/2009

#### **INSTRUCTIONS:**

Attempt question <u>ONE</u> and any other <u>TWO</u> questions

#### PLEASE TURN OVER

- 1. (a) Prove that complete integral of the equation  $(px + qy - z)^2 = l + p^2 + q^2 \text{ is } ax + by + cz = (a^2 + b^2 + c^2)^{1/2}$ (6 marks)
  - (b) Solve (yz + xyz)dx + (zx + xyz)dy + (xy + xyz)dz (6 marks)

(c) Find the surfaces which intersects the surface of the system z(x + y) = c(3z + 1)Orthogonally and which passes through the circle  $x^2 + y^2 = 1$ , z = 1 (8 marks)

- (d) Solve  $p + 3q = 5z + \tan(y 3x)$  (7 marks)
- (e) Find the complete integral of  $p_1^3 + p_2^2 + p_3 = 1$  using Jacobi's method. (3 marks)
- 2. (a) Find a complete integral of px + qy = pq using char pit's method. (7 marks)
  - (b) Find a complete, integral of  $(p^2 + qz)y = qz$  (7 marks)
  - (c) Find a complete and singular integral of  $2xz px^2 2qxy + pq = 0$  (6 marks)

3. (a) Find the integral surface of the linear partial differential equation
x(y<sup>2</sup> + z)p - y(x<sup>2</sup> + z)q = (x<sup>2</sup> - y<sup>2</sup>)z which contains the straight line
x + y = 0 and z = 1

(6 marks)

- (b) Find the complete integral of  $p_1x_1 + p_2x_2 = p_3^2$  using Jacobi's method. (6 marks)
- (c) Solve;  $zydx = zxdy + y^2zdz$  (5 marks)
- 4. (a) Solve;

$$y(y+z)dx + x(x-z)dy + x(x+y)dz = 0$$
 (10 marks)

(b) Find a partial differential equation by eliminating a and b from the equation  $z = ax + by + a^2 + b^2$ (3 marks) (c) Solve;  $p \tan x + q \tan y = \tan z$ 

(7 marks)

- 5. (a) Solve  $x(y^2 + z)p y(x^2 + z)q = z(x^2 y^2)$  (5 marks)
  - (b) Solve; (y+z)p + (z+x)q = x + y (5 marks)
  - (c) Solve 2(y+z)dx (x+z)dy + (2y-x+z)dz = 0 (10 marks)