UNIVERSITY EXAMINATIONS
2008/2009 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

COURSE CODE: MATH 410
COURSE TITLE: ORDINARY DIFFERENTIAL EQUATION I
STREAM: Y4S1
DAY: WEDNESDAY
TIME:
9.00-11.00 A.M.

DATE:
02/12/2009

INSTRUCTIONS:

Attempt question ONE and any other TWO questions

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) Show that the equation;

$$
\begin{aligned}
& x=u+v \\
& y=u-v \\
& z=4 u v
\end{aligned}
$$

represents a surface hence find its constraint form.
(5 marks)
(b) Find the Equation of the Tangent plane to the surface $4 x^{2}-9 y^{2}-9 z^{2}-36=0$ at the point $[3 \sqrt{3}, 2,2]$
(5 marks)
(c) Solve;

$$
\frac{d x}{x+y}=\frac{d y}{y}=\frac{d z}{z+y^{2}}
$$

(5 marks)
(d) Find an Integrating factor for the Equation $\left(y+x^{2} y^{2}\right) d x=x d y$ and solve it.
(5 marks)
(e) Verify that the differential equation $\left(y^{2}+z y\right) d x+\left(x z+z^{2}\right) d y+\left(y^{2}-x y\right) d z=0$ is integrable and find its solution.
(5 marks)
(f) Form a quasi-linear partial differential equation of $1^{\text {st }}$ order whose solution is

$$
\begin{equation*}
\emptyset\left(x^{2} e^{z} y e^{z}\right)=0 \tag{5marks}
\end{equation*}
$$

QUESTION TWO (20 MARKS)

(a) A surface is defined by;

$$
x=u ; \quad y=v ; \quad z=\frac{1}{4}\left(u^{2}-v^{2}\right)
$$

Find (i) The Equation of the Tangent plane
(ii) The Equation of the normal line at the point $(3,1,2)$
(10 marks)
(b) Find the Equation of
(i) The tangent line
(ii) The Normal plane

To the curve; $x=t-\cos t$
$y=3-\sin 2 t$
$z=1-\cos 3 t$ at the point $t=\frac{\pi}{2}$
(10 marks)

QUESTION THREE (20 MARKS)

(a) Reduce the simultaneous ordinary differential equation defined by,

$$
\begin{aligned}
& P_{1} d x+Q_{1} d y+R_{1} d z=0 \\
& P_{2} d x+Q_{2} d y+R_{2} d z=0
\end{aligned}
$$

To a single ordinary differential equation, hence solve

$$
\begin{equation*}
\frac{d x}{y(x+y)+a z}=\frac{d y}{x(x+y)-a z}=\frac{d z}{z(x+y)} \tag{10marks}
\end{equation*}
$$

(b) Find the orthogonal trajectories on the cone. $x^{2}+y^{2}=z^{2} \tan ^{2} \alpha$ of its intersections with the family of planes parallel to $z=0$
(10 marks)

QUESTION FOUR (20 MARKS)

(a) Find an integrating factor and solve the equation defined by

$$
2 x^{2} y d x+\left(x^{3}+2 x y\right) d y=0
$$

(10 marks)
(c) The acceleration of a particle moving in a straight line is negative of its velocity. If it starts from the origin with velocity equal to one, find its position at the end of two units of time.

QUESTION FIVE (20 MARKS)

(a) Verify that the differential equation; $y d x-(x+z) d y+y d z=0$ is homogeneous hence find its primitive.
(b) Form a potential differential equation whose solution is

$$
\begin{equation*}
\emptyset\left(x^{2}+y^{2}+z^{2}, x y z\right)=0 \tag{7marks}
\end{equation*}
$$

(c) Find the general solution of; $x z x+z 2 y=y$

