

2008/2009 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 312

COURSE TITLE: ORDINARY DIFFERENTIAL EQUATION I STREAM: SESSION VII, VIII \& IX

DAY:
TIME:
9.00 - 11.00 A.M.

DATE: 12/08/2009

INSTRUCTIONS:

Attempt question ONE and any other TWO questions.

QUESTION ONE (30 MARKS)

(a) Classify the differential equations as to order, degree and linearity.
(i) $3 x^{2} \frac{d^{3} y}{d x^{3}}-\sin x \frac{d^{2} y}{d x^{2}}-\cos x y=0$
(ii) $7\left(y^{\prime \prime}\right)^{3}+2 y^{\prime}+2 \times y^{2}=0$
(3 marks)
(b) Find the differential associated with the primitive

$$
\begin{equation*}
y=A e^{2 x}+B e^{x}+c \tag{5marks}
\end{equation*}
$$

(c) Show that the differential equation $3 x^{2} y d x+\left(x^{3}-y^{2}\right) d y=0$ is exact and hence or otherwise solve it.
(4 marks)
(d) A radio active isotope remains unused in a laboratory for 10 years after which it is found to contain only 80% of the original mass. Find
(i) The half of the isotope
(ii) How many years it will take until only 15% of the original mass is left. (6 marks)
(e) Find the nature of the roots of the auxillary equations of the given differential equations and hence solve them
(i) $\left(3 D^{3}-2 D^{2}-D\right) y=0$
(4 marks)
(ii) $y^{\prime \prime}+y=0$

QUESTION TWO (20 MARKS)

(a) Solve the differential equation

$$
\begin{equation*}
x^{2} \frac{d y}{d x}+3 x y=1 \tag{4marks}
\end{equation*}
$$

(b) Show that $\frac{1}{x^{2}}$ is an integrating factor of the differential equation.

$$
\begin{equation*}
\left(3 x^{2}+y^{2}\right) d x-2 x y d y=0 \text { and solve it. } \tag{6marks}
\end{equation*}
$$

(c) Find the general solution of the differential equation $\frac{d^{4} y}{d x^{4}}+2 \frac{d^{3} y}{d x^{3}}+3 \frac{d^{3} y}{d x^{2}}-10 \frac{d y}{d x}+18=0$ y one root is $1+\mathrm{i}$ and complex roots occurs in conjugate pairs.
(10 marks)

QUESTION THREE (20 MARKS)

(a) Use the substitute $y=v x$ to solve the equation $x(x-y) \frac{d y}{d x}+y^{2}=0$
(b) Use the method of undetermined coefficients to solve the differential equation $y^{\prime \prime}-y^{\prime}-2 y=\sin x$
(c) Solve the equation $\frac{d^{2} y}{d x^{2}}+y=\csc x$ using the method of variation of parameters.
(7 marks)

QUESTION FOUR (20 MARKS)

(a) Find the power series solution of the equation $\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+x y=0$,
$y(0)=4 \quad y^{\prime}(0)=6$ by Taylor's series expansion method.
(10 marks)
(b) Find the solution of the homogeneous system.
(6 marks)

$$
\begin{align*}
& \frac{d x}{d t}-3 x+18 y=0 \\
& \frac{d y}{d t}-2 x+9 y=0 \tag{10marks}
\end{align*}
$$

QUESTION FIVE (20 MARKS)

(a) If a and b are arbitrary constants find the second order differential equation whose solutions is $y=a x+\frac{b}{x}$
(b) Prove that the transformation $V=y^{1-n}$ reduces the equation $\frac{d y}{d x}+p(x) y=Q(x) y^{n}$ to a linear equation in V and x. Hence solve the initial value problem.

$$
\frac{d y}{d x}+\frac{x}{2 x}=\frac{x}{y^{3}} \quad y(1)-2
$$

(c) Find the solution of the differential equation

$$
\sin x \frac{d y}{d x}-y \cos x=\sin ^{2} x \cos x \text { given that } y=2 \text { when } x=\pi / 2 .(6 \text { marks })
$$

