COURSE CODE: MATH 322

COURSE TITLE: ORDINARY DIFFERENTIAL EQUATION II

STREAM: SESSION VI

DAY: WEDNESDAY

TIME:
9.00 - 11.00 A.M.

DATE:
12/08/2009

INSTRUCTIONS:
Attempt Question ONE and Any other TWO

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

a) Obtain two linearly independent solutions of the differential equations:

$$
2 x y{ }^{11}+5(1-2 x) y^{1}-5 y=0
$$

Valid near the origin for $\mathrm{x}>0$ using power series method
b) Use elementary eliminations calculus to solve :

$$
\begin{aligned}
& \mathrm{Y}^{1}=2 \mathrm{Y}+\mathrm{Z} \\
& \mathrm{Z}^{1}=-4 \mathrm{Y}+2 \mathrm{Z}
\end{aligned}
$$

c) Write the following differential equations as the first order system:
i) $\quad Y^{11}+4 y^{1}+4 y=e^{x}$
ii) $\quad \mathrm{Y}^{111}+\mathrm{py}^{11}+\mathrm{qy}^{1}+\mathrm{ry}=\mathrm{f}(\mathrm{x})$
d) Identify and classify all singular base of the following differential equations:
i) $x(x-1)^{2}(x+2) y^{11}+x^{2} y^{1}-\left(x^{3}+2 x-1\right) y=0$
ii) $x^{4}\left(x^{2}+1\right)(x-y)^{2} y^{11}+4 x^{3}(x-1) y^{1}+(x+1) y=0$
e) Solve the following system:

$$
X^{1}=A X \text { for } A=\left(\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right)
$$

QUESTIONTWO (20 MARKS)

a) Solve the system $x^{1}=A x+B$ for $A=\left(\begin{array}{rr}2 & 1 \\ -4 & 2\end{array}\right)$

$$
\mathrm{B}=\left[\begin{array}{ll}
3 & e^{2 t} \\
t & e^{2 t}
\end{array}\right]
$$

b) Consider the Richardson model

$$
\begin{aligned}
& \frac{d x}{d t}=a y-p x+r \\
& \frac{d y}{d t}=b x-q y+s
\end{aligned}
$$

Where $\mathrm{a}, \mathrm{b}, \mathrm{p}$ and q are positive constants r and s having any value.
This model is used to study the arms raises for two countries with x and y expenditures for armaments respectively .Investigate this model for $\mathrm{a}=2$, $\mathrm{b}=4, \mathrm{p}=5, \mathrm{q}=3, \mathrm{r}=1, \mathrm{~s}=2, \mathrm{x}_{0}=8, \mathrm{y}_{0}=7$

QUESTION THREE (20MARKS)

a) Solve the system:

$$
\mathrm{X}^{1}=\mathrm{AX} \text { for } \mathrm{A}=\left(\begin{array}{rr}
0 & 1 \tag{10mks}\\
-4 & 4
\end{array}\right)
$$

b) Find a solution of the initial value problem:

$$
\mathrm{x}^{1}=\mathrm{x}^{2}, \quad \mathrm{x}_{0}=0, \quad \mathrm{y}_{0}=1
$$

Using Picard iterates define below:

$$
\begin{align*}
& \mathrm{y}_{0}(\mathrm{x})=\mathrm{y}_{0} \\
& y 1=y o+\int_{0}^{x} f(x, y o(\mathrm{t})) \mathrm{dt} \\
& 1 \\
& 1 \\
& 1 \\
& 1 \tag{10mks}\\
& \mathrm{y}_{\mathrm{n}} \quad=\mathrm{y}_{0}+\int_{0}^{x} f\left(x, y_{n-1}(t)\right) \mathrm{dt}
\end{align*}
$$

QUESTION FOUR (20 MARKS)

a) Two coils of a transformer are identical with resistance R, inductance L, mutual inductance M . A Voltage E is impressed on the primary coil. Determine the current at any instant assuming that there is no currents in either coil initially
b) Solve the following first order non homogenous system:
$\mathrm{X} 1=\mathrm{Ax}+\mathrm{f}(\mathrm{t})$
For $\mathrm{A}=\left(\begin{array}{cc}0 & 1 \\ -2 & 3\end{array}\right)$ and $f(x)=\left(\begin{array}{ll}f, & (t) \\ f_{2} & (t)\end{array}\right)$

QUESTION FIVE (10 MKS)

a) Identify and classify all singular points of:
i) $\quad x^{3}(x-1) y^{11}+(x-1) y^{1}+4 x y=0$
(3mks)
ii) $\quad x y^{11}+y=0$
(2mks)
b) Write the following differential equations as the first order system:
i) $\quad Y^{11}+z y^{11}-8 y=0$
ii) $\quad \mathrm{Y}^{11}+\mathrm{x}=3$
c) Solve the system:

$$
X^{1}=A X \text { for } A=\left[\begin{array}{cc}
4 & 1 \tag{2mks}\\
-4 & 8
\end{array}\right]
$$

d) Use elementary elimination calculus to solve the following system of first order deferential equation:

$$
\begin{align*}
& Z^{1}=4 Z-W \\
& W^{1}=-4 Z+4 W \tag{5mks}
\end{align*}
$$

