COURSE CODE: MATH 322

COURSE TITLE: ORDINARY DIFFERENTIAL EQUATION II
STREAM: SESSION VI \& VIII
DAY:
SATURDAY
TIME:
9.00 - 11.00 A.M.

DATE:
28/11/2009

INSTRUCTIONS:

Attempt question ONE and any other TWO questions

QUESTION ONE

(a) Write the following differential equations as a first order system:
(i) $y^{11}-6 y^{1}+8 y=x+z$
(2 marks)
(ii) $y^{v}-y=0$
(4 marks)
(b) Use elementary elimination calculus to solve the following systems of equation:

$$
\begin{align*}
& y^{1}=2 y+z \\
& z^{1}=-4 y+2 z \tag{8marks}
\end{align*}
$$

(c) Identify and classify all singular points of the following differential equations:

> (i) $x^{3}(x-1) y^{11}+(x-1) y^{1}+4 x y=0$
> (ii) $\left(x^{2}+1\right)(x-4)^{3} y^{11}+(x-4)^{2} y^{1}+y=0$
(3 marks)
(3 marks)
(d) Obtain two linearly independent solution of the differential equation

$$
2 x y^{11}+(1+x) y^{1}-2 y=0
$$

valid near the origin for $x>0$ using power series method.
(10 marks)

QUESTION TWO

(a) Find a linearly independent solution to the system $x^{1}=A X$ for $A=\left(\begin{array}{cc}8 & -1 \\ 4 & 12\end{array}\right)$
(10 marks)
(b) Find a solution of the initial value problem

$$
y^{1}=x^{2}, \quad x_{0}=0, y_{0}=1
$$

Using Picard iterate define as

$$
\begin{array}{cc}
y_{0}(1)=y_{0} \\
y_{1}= & y_{0}+\int_{0}^{x} f\left(x, y_{0}(t)\right) d t \\
\vdots & \vdots \\
\vdots & \vdots \\
y_{n}= & y_{0}+\int_{0}^{x} f\left(x, y_{n-1}(t)\right) d t
\end{array}
$$

(10 marks)

QUESTION THREE

(a) Two coils of a transformer are identical with resistance R , inductance m , mutual inductance.

A voltage E is impressed on the primary coil. Determine the currents in the coils at any instant t assuming that there is no current in either coils initially.
(10 marks)
(b) Consider the Richardson model

$$
\begin{aligned}
& \frac{d x}{d t}=a y-p x+r \\
& \frac{d y}{d x}=b x-q y+s
\end{aligned}
$$

Where $\mathrm{a}, \mathrm{b}, \mathrm{p}$, and q are positive constants, rad s caring any value. This model is used to study the areas races for two ar respectively. Investigate this model for $a=4, b=2, p=3, q=1, r=1, r=2, S=2 x_{0}=4$, and $y_{0}=1$
(10 marks)

QUESTION FOUR

(a) Solve the system

$$
\begin{aligned}
& x^{1}=2 x-5 y \\
& y^{1}=2 x-4 y
\end{aligned}
$$

(10 marks)
(b) Solve the following non homogeneous system:

$$
x^{1}=A X+B \text { for } \mathrm{A}=\left(\begin{array}{cc}
2 & 1 \tag{10marks}\\
-4 & 2
\end{array}\right), B\binom{3 e^{2 t}}{t e^{2 t}}
$$

QUESTION FIVE

(a) Reduce the following into a first order system:

$$
\begin{equation*}
y^{11}+4 y^{1}+4 y=e^{x} \tag{2marks}
\end{equation*}
$$

(b) Identify and classify all singular points of
(i) $x^{3}\left(x^{2}-4\right) y^{11}+2\left(x^{2}-4\right) y^{1}-x y=0$
(ii) $\left(x^{2}+6 x+8\right) y^{11}+3 y=0$
(c) For a linear differential equation $b(x) y^{n}+b_{1}(x) y^{n-1}+----+b_{n}(x) y=R(x)$ what you understand by the term
(i) Ordinary point of the differential equation
(ii) Regular singular point of the differential equation.
(iii) Irregular singular point of the differential equation.
(d) Use power series method to solve the following differential equation

$$
\begin{equation*}
x^{2} y^{11}+3 x y^{1}+(1-2 x) y=0 \text { valid for } x>0 \tag{9marks}
\end{equation*}
$$

