KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION

SCIENCE

COURSE CODE: MATH 322

COURSE TITLE: ORDINARY DIFFERENTIAL EQUATION II

- STREAM: SESSION VI & VIII
- DAY: SATURDAY
- TIME: 9.00 11.00 A.M.
- DATE: 28/11/2009

INSTRUCTIONS:

Attempt question <u>ONE</u> and any other <u>TWO</u> questions

PLEASE TURN OVER

QUESTION ONE

- (a) Write the following differential equations as a first order system:
 - (i) $y^{11} 6y^1 + 8y = x + z$ (2 marks) (ii) $y^v - y = 0$ (4 marks)
- (b) Use elementary elimination calculus to solve the following systems of equation: $y^1 = 2y + z$

$$z^1 = -4y + 2z \tag{8 marks}$$

(c) Identify and classify all singular points of the following differential equations:

(i)
$$x^{3}(x-1)y^{11} + (x-1)y^{1} + 4xy = 0$$
 (3 marks)

(ii)
$$(x^2 + 1)(x - 4)^3 y^{11} + (x - 4)^2 y^1 + y = 0$$
 (3 marks)

(d) Obtain two linearly independent solution of the differential equation

 $2xy^{11} + (1+x)y^1 - 2y = 0$ valid near the origin for x > 0 using power series method. (10 marks)

QUESTION TWO

(a) Find a linearly independent solution to the system $x^1 = AX$ for $A = \begin{pmatrix} 8 & -1 \\ 4 & 12 \end{pmatrix}$

(10 marks)

(b) Find a solution of the initial value problem

$$y^1 = x^2$$
, $x_0 = 0$, $y_0 = 1$

Using Picard iterate define as

$$y_{0}(1) = y_{0}$$

$$y_{1} = y_{0} + \int_{0}^{x} f(x, y_{0}(t)) dt$$

$$! ! ! ! ! !$$

$$y_{n} = y_{0} + \int_{0}^{x} f(x, y_{n-1}(t)) dt$$
(10 marks)

QUESTION THREE

- (a) Two coils of a transformer are identical with resistance R, inductance m, mutual inductance. A voltage E is impressed on the primary coil. Determine the currents in the coils at any instant t assuming that there is no current in either coils initially. (10 marks)
- (b) Consider the Richardson model

$$\frac{dx}{dt} = ay - px + r$$
$$\frac{dy}{dx} = bx - qy + s$$

Where a, b, p, and q are positive constants, rad s caring any value. This model is used to study the areas races for two ar respectively. Investigate this model for a = 4, b = 2, p = 3, q = 1, r = 1, r = 2, S = 2 $x_0 = 4$, and $y_0 = 1$ (10 marks)

QUESTION FOUR

(a) Solve the system

$$x^1 = 2x - 5y$$

 $y^1 = 2x - 4y$ (10 marks)

(b) Solve the following non homogeneous system:

$$x^{1} = AX + B$$
 for $A = \begin{pmatrix} 2 & 1 \\ -4 & 2 \end{pmatrix}, B \begin{pmatrix} 3e^{2t} \\ te^{2t} \end{pmatrix}$ (10 marks)

QUESTION FIVE

(a) Reduce the following into a first order system:

$$y^{11} + 4y^1 + 4y = e^x$$
 (2 marks)

(b) Identify and classify all singular points of (i) $x^{3}(x^{2} - 4)y^{11} + 2(x^{2} - 4)y^{1} - xy = 0$ (3 marks) (ii) $(x^{2} + 6x + 8)y^{11} + 3y = 0$ (2 marks)

(c) For a linear differential equation $b(x)y^n + b_1(x)y^{n-1} +$	$- + b_n(x)y = R(x)$
what you understand by the term	
(i) Ordinary point of the differential equation	(1 mark)

(ii)	Regular singular point of the differential equation.	(2 marks)
(11)	Regular singular point of the anterential equation.	$(2 \operatorname{III} (1 \operatorname{II} (1 \operatorname{I} (1) ($

- (iii) Irregular singular point of the differential equation. (1 mark)
- (d) Use power series method to solve the following differential equation $x^2y^{11} + 3xy^1 + (1 - 2x)y = 0$ valid for x > 0 (9 marks)