KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

- COURSE CODE: MATH 322
- **COURSE TITLE:** ORDINARY DIFFERENTIAL EQUATION II
- STREAM: SESSION VI & VIII
- DAY: WEDNESDAY
- TIME: 9.00 11.00 A.M.
- DATE: 08/04/2009

INSTRUCTIONS:

- 1. Question ONE is compulsory.
- 2. Attempt question ONE and any other TWO

PLEASE TURN OVER

QUESTION ONE-COMPULSORY (30 marks)

(a) Obtain two linearly independent solution of the differential equation

$$4xy^{11} + 2y^1 + y = 0$$

valid near the origin for x > 0 using power series method (10 marks)

(b) Identify and classify all singular points of:

i.
$$4xy^{11} + 2y^1 + y = 0$$
 (2 marks)

ii.
$$9x (1-x)y^{11} - 12y^{1} + 4y = 0$$
 (3 marks)

- iii. $(x-x^2)y^{11} + (1-x)y^1 y=0$ (3 marks)
- (c) Use elementary elimination calculus to solve the following system of first order differential equation:

$$\frac{dx}{dt} = y$$

$$\frac{dy}{dt} = -2x + 3y$$
(6 marks)

(d) Write the following differential equations as a first order system:

i.
$$y^{11} + py^1 + qy = f(x)$$
 (2 marks)

ii.
$$y^{111} + py^{11} + qy^1 + ry = f(x)$$
 (4 marks)

QUESTION TWO (20 MARKS)

(a) Fine two linear independent solutions to the system;

$$\mathbf{x}^{1} = \mathbf{A}\mathbf{x}$$
 for $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix}$

(8 marks)

(b) Solve the system;

$$\mathbf{x}^{1} = \mathbf{A}\mathbf{x}$$
 for $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -4 & 4 \end{bmatrix}$

(12 marks)

OUESTION THREE (20 Marks)

(a) Solve the system ;

$$X^{1} = Ax + f(t)$$
 for $A = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}$ and $f(t) = \begin{bmatrix} f_{1}(t) \\ f_{2}(t) \end{bmatrix}$ (10 marks)

(b) Two coils of a transformer are identical with resistance R, inductance L, mutual inductance M. A voltage E is impressed on the primary coil. Determine the currents in the coils at any instant assuming that there is no current in either coil initially. (10 marks)

QUESTION FOUR (20 Marks)

(a) Consider the following sequence of functions

$$y_{0}(x) = y_{0}$$

$$y_{1} = y_{0} + \int_{0}^{x} f(t, y_{0}(t)) dx$$

$$y_{n}(x) = y_{0} + \int_{0}^{x} f(t, y_{n-1}(t)) dt$$

Show that the above sequence converges to a solution for the initial value problem

$$y^1 = x^2, x_0 = 0, y_0 = 1$$
 (10 marks)

(b) Consider the Richardson model

$$\frac{dx}{dt} = ay - px + r$$
$$\frac{dy}{dx} = bx - qy + s$$

Where a, b. p and q are positive constants r and s having any value.

This model is used to study the arms races for two countries with x and y expenditures for armaments respectively.

Investigate this model for $a = 4, b = 2, p = 3, q = 1, r = 2, s = 2, x_0 = 4$ and $y_0=1$ (10 marks)

QUESTION FIVE (20 Marks)

(a) Solve the system

$$x^{1} = 2x - 5y$$

 $y^{1} = 2x - 4y$ (12 marks)

(b) Test whether the solution to the system in (a) above is linearly independent at

$$\mathbf{t} = \mathbf{t}_0 = \mathbf{0} \tag{4 marks}$$

(c) Reduce the following differential equation into a first order system:

 $y^{1V} - y = 0$ (4 marks)