

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 322

COURSE TITLE: ORDINARY DIFFERENTIAL EQUATION II
STREAM: SESSION VI \& VIII
DAY: WEDNESDAY
TIME:
9.00 - 11.00 P.M.

DATE:
08/04/2009

INSTRUCTIONS:

1. Question ONE is compulsory.
2. Attempt question ONE and any other TWO

PLEASE TURN OVER

QUESTION ONE-COMPULSORY (30 marks)

(a) Identify and classify all singular points of

$$
\text { (i) } x(x-1)^{2}(x+2) y^{11}+x^{2} y^{1}-\left(x^{3}+2 x-1\right) y=0
$$

(ii) $x^{4}\left(x^{2}+1\right)(x-1)^{2} y^{11}+4 x^{3}(x-1) y^{1}+(x+1) y=0$
(b) Use elementary elimination calculus to solve the following system of first order differential equation

$$
\begin{align*}
& u^{1}=4 u-v \\
& v^{1}=4 u+4 v \tag{8marks}
\end{align*}
$$

(c) Write the following differential equation as first order system:
(i) $y^{111}+p y^{11}+q y^{1}+r y=f(x)$
(ii) $y^{1 v}-y=0$
(3 marks)
(d) Obtain two linearly independent solution of the differential equation

$$
4 x y^{11}+3 y^{1}+3 y=0
$$

Valid near the origins for $x>0$ using power series method

QUESTION TWO (20 MARKS)

(a) Find a linear independent solution to the system

$$
\mathrm{x}^{1}=\mathrm{Ax} \quad \text { for } \mathrm{A}=\left[\begin{array}{cc}
0 & 1 \tag{10marks}\\
-2 & 3
\end{array}\right]
$$

(b) Solve the system

$$
\begin{aligned}
& x^{1}=2 x-5 y \\
& y^{1}=2 x-4 y
\end{aligned}
$$

(10 marks)

QUESTION THREE (20 Marks)

(a) Two coils of a transformer are identical with resistance R, inductance L, mutual inductance M . A voltage E is impressed on the primary coil. Determine the currents in the coils at any instant assuming that there is no current in either coil initially.
(10 marks)
(b) Solve the system

$$
\begin{align*}
\mathrm{X}^{1}=\mathrm{Ax}+\mathrm{B} \text { for } \quad \mathrm{A} & =\left(\begin{array}{cc}
2 & 1 \\
-4 & 2
\end{array}\right) \\
\mathrm{B} & =\left(\begin{array}{ll}
3 & e^{2 t} \\
t & e^{2 t}
\end{array}\right) \tag{10marks}
\end{align*}
$$

QUESTION FOUR (20 Marks)

(a) Consider the Richardson model

$$
\begin{aligned}
& \frac{d x}{d t}=\mathrm{ay}-\mathrm{px}+\mathrm{r} \\
& \frac{d y}{d x}=\mathrm{bx}-\mathrm{qy}+\mathrm{s}
\end{aligned}
$$

Where $\mathrm{a}, \mathrm{b} . \mathrm{p}$ and q are positive constants r and s having any value.
This model is used to study the arms races for two countries with x and y expenditures for armaments respectively.

Investigate this model for $\mathrm{a}=4, \mathrm{~b}=2, \mathrm{p}=3, \mathrm{q}=1, \mathrm{r}=2, \mathrm{~s}=2, \mathrm{x}_{0}=4$ and $\mathrm{y}_{0}=1$
(10 marks)
(b) Find a linearly independent solution to the system:

$$
\mathrm{X}^{1}=\mathrm{Ax} \quad \text { for } \quad A=\left(\begin{array}{cc}
4 & 1 \tag{10marks}\\
-8 & 8
\end{array}\right)
$$

QUESTION FIVE (20 Marks)

(a) Use elementary elimination calculus to solve the following first order system:

$$
\begin{aligned}
& y^{1}=2 y+z \\
& z^{1}=-4 y+2 z
\end{aligned}
$$

(10 marks)
(b) Solve the system

$$
\begin{array}{r}
\mathrm{x}^{1}=\mathrm{Ax}+f(t) \quad \text { for } \quad \mathrm{A}=\left(\begin{array}{cc}
2 & 1 \\
-4 & 2
\end{array}\right) \\
f(t)=\binom{f_{1}(t)}{f_{2}(t)} \tag{10marks}
\end{array}
$$

