KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 312

COURSE TITLE: ORDINARY DIFFERENTIAL EQUATIONS I

- STREAM: SESSION V
- DAY: WEDNESDAY
- TIME: 2.00 4.00 P.M.
- DATE: 07/04/2010

INSTRUCTIONS:

Answer Question ONE and any other TWO Questions.

PLEASE TURN OVER

QUESTION ONE: 30 MARKS

a). Define the following terms as used in ordinary differential equations; differential equation,
order, linearity and homogeneous. [8 marks]

b). Solve the initial value problem
$$(1 + y^2)dx = (1 + x^2)dy = 0$$

With the initial conditions that when $x = 0$, $y = 1$. [4 marks]

- c). Find the orthogonal trajectories of all parabolas with vertices at the origin and foci on the x-axis
- [4 marks]
- d). Show that the equation $x^3y''' 6xy' + 12y = 0$ has three linearly independent solutions each of the form $y = x^r$ [8 marks]
- e). Determine the solution of the following non-homogeneous equation by the method of variation

of parameters
$$\frac{d^2 y}{dx^2} - 3\frac{dy}{dx} + 2y = \frac{1}{1 + e^{-x}}$$
 [6 marks]

QUESTION TWO: 20 MARKS

- a). A large tank contains 81 gallons of brine in which 20 pounds of salt is dissolved. Brine containing 3 pounds of dissolved salt per gallon runs into the tank at a rate of 5 gallons per minute. The mixture is kept uniform by stirring, runs out of the tank at a rate of 2 gallons per minute. How much salt is in the tank at the end of 37 minutes.
- b). Define what is an exact differential equation. Show that the equation

 $\{\cos(t+x^2)+3x\}dt+\{2x\cos(t+x^2)+3t\}dx=0$

Is an exact equation hence find its solution.

[10 marks]

QUESTION THREE: 20 MARKS

a). The following equation is related to biophysical limitations in the study of deep diving

 $y' = AY + B + Be^{-ax}$ where a, b, A and B are constants show that the general solution of

this equation is given by

$$y' = -\frac{B}{A} - \frac{b}{a+A}e^{-ax} + ce^{Ax}$$

Where c is an arbitrary constant.

- b). Given that $f_1(x) = x^2$ and $f_2(x) = cosx$, find the Wronskian of $f_1(x)$ and $f_2(x)$. [4 marks]
- c). Show that $f_1(x) = \cos x$ and $f_2(x) = \sin x$ are linearly independent solutions of the differential equation y'' + y = 0[8 marks]

QUESTION FOUR: 20 MARKS

a). Find the solution of the following initial value problems of the second order

$$y'' - 5y' + 6y = 0$$
, $y(0) = 1$, $y'(0) = -1$. [10 marks]

b). The sum of Ksh 5,000 is invested in a bank which pays interest at a rate of 8% per annum compounded continuously. The following separable equation describes the amount of money at any time t.

$$\frac{dy}{dx} = \frac{8}{100}y$$

Find the total amount of money after 25 years.

QUESTION FIVE: 20 MARKS

a). By using suitable transformation to reduce the equation to a separable equation, solve

$$(x + y)dx + (3x + 3y - 4)dy = 0$$
 [8 marks]

b). Eliminate the constants to obtain the general equation whose general solution is

$$y = c_1 x^2 + c_2 e^{2x}$$
 where c_1 and c_2 are arbitrary constants. [6 marks]

c). By using a suitable integrating factor solve

$$(3x^4y - 1)dx + x^5dy = 0$$
 when $x = 1$, and $y = 1$. [6 marks]

[10 marks]

[8 marks]