

UNIVERSITY

UNIVERSITY EXAMINATIONS
2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 312

COURSE TITLE: ORDINARY DIFFERENTIAL EQUATION I
STREAM: SESSION III
DAY:
FRIDAY
TIME:
2.00-4.00 P.M.

DATE:
26/11/2010

INSTRUCTIONS:

1. Question ONE is compulsory.
2. Attempt question ONE and any other TWO

QUESTION ONE: 30 MARKS

a). Define the following terms as used in ordinary differential equations; differential equation, order, linearity and homogeneous.
b). Solve the initial value problem $\left(1+y^{2}\right) d x=\left(1+x^{2}\right) d y=0$

With the initial conditions that when $x=0, y=1$.
c). Find the orthogonal trajectories of all parabolas with vertices at the origin and foci on the x -axis [4 marks]
d). Show that the equation $x^{3} y^{\prime \prime \prime}-6 x y^{I}+12 y=0$ has three linearly independent solutions each of the form $y=x^{r}$
e). Determine the solution of the following non-homogeneous equation by the method of variation
of parameters

$$
\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=\frac{1}{1+e^{-x}}
$$

[6 marks]

QUESTION TWO: 20 MARKS

a). A large tank contains 81 gallons of brine in which 20 pounds of salt is dissolved. Brine containing 3 pounds of dissolved salt per gallon runs into the tank at a rate of 5 gallons per minute. The mixture is kept uniform by stirring, runs out of the tank at a rate of 2 gallons per minute. How much salt is in the tank at the end of 37 minutes.
[10 marks]
b). Define what is an exact differential equation. Show that the equation

$$
\left\{\cos \left(t+x^{2}\right)+3 x\right] d t+\left[2 x \cos \left(t+x^{2}\right)+3 t\right] d x=0
$$

Is an exact equation hence find its solution.
[10 marks]

QUESTION THREE: 20 MARKS

a). The following equation is related to biophysical limitations in the study of deep diving $y^{\prime}=A Y+B+B e^{-a x}$ where $\mathrm{a}, \mathrm{b}, \mathrm{A}$ and B are constants show that the general solution of
this equation is given by

$$
y^{\prime}=-\frac{B}{A}-\frac{b}{a+A} e^{-a x}+c e^{A x}
$$

Where c is an arbitrary constant.
b). Given that $f_{1}(x)=x^{2}$ and $f_{2}(x)=\cos x$, find the Wronskian of $f_{1}(x)$ and $f_{2}(x)$. [4 marks]
c). Show that $f_{1}(x)=\cos x$ and $f_{2}(x)=\sin x$ are linearly independent solutions of the differential equation $y^{\prime \prime}+y=0$
[8 marks]

QUESTION FOUR: 20 MARKS

a). Find the solution of the following initial value problems of the second order

$$
\begin{equation*}
y^{\prime \prime}-5 y^{t}+6 y=0, \quad y(0)=1, \quad y^{r}(0)=-1 . \tag{10marks}
\end{equation*}
$$

b). The sum of $\mathrm{Ksh} 5,000$ is invested in a bank which pays interest at a rate of 8% per annum compounded continuously. The following separable equation describes the amount of money at any time t.

$$
\frac{d y}{d x}=\frac{8}{100} y
$$

Find the total amount of money after 25 years.
[10 marks]

QUESTION FIVE: 20 MARKS

a). By using suitable transformation to reduce the equation to a separable equation, solve

$$
(x+y) d x+(3 x+3 y-4) d y=0
$$

b). Eliminate the constants to obtain the general equation whose general solution is

$$
y=c_{1} x^{2}+c_{2} e^{2 x} \quad \text { where } c_{1} \text { and } c_{2} \text { are arbitrary constants. }
$$

c). By using a suitable integrating factor solve

$$
\left(3 x^{4} y-1\right) d x+x^{5} d y=0 \text { when } x=1, \text { and } y=1
$$

