FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

COURSE CODE: MATH 312

COURSE TITLE: ORDINARY DIFFERENTIAL EQUATIONS
STREAM: Y3S1

DAY: WEDNESDAY
TIME:
2.00-4.00 P.M.

DATE:

23/03/2011

INSTRUCTIONS:

1.Question ONE is compulsory.
2. Attempt question ONE and any other TWO

PLEASE TURN OVER

QUESTION ONE

(i) Obtain a differential equation associated with the primitive $y=A e^{2 x}+B e^{x}+C$ and state its order
(ii) Solve $y e^{x^{2}} d x+\frac{y^{3}-1}{x} d y=0$
(iii) In a certain culture of bacteria, the rate of increase is proportional to the number present.
(a) If it is found that the number doubles in 4 hours, how many may be expected at the end of 12 hours?

9mks)
(b) If there were 10^{4} at the end of 3 hours, how many were there at the beginning?

Give your answer to the nearest tens
(iv) Solve the differential equation:

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y}{x}+x \sin \frac{y}{x} \tag{5mks}
\end{equation*}
$$

QUESTION TWO

One of the basic equations in electric circuits is $L \frac{d i}{d t}+R_{i}=E(t) \ldots \ldots \ldots$ (i)
Where L is inductance, R (ohms) is the resistance, i (amperes) the current and E (volts) the electromotive force or emf.
(a) Solve equation (i), given that when $\mathrm{t}=0, E(t)=E_{0}$ and $i=i_{0}$
(b) If $L=3, R=15$ and $E(t)=110 \sin 120 \pi t$ and $i=0$ when $t=0$ show that a particular solution for equation (i) is given as:

$$
\begin{equation*}
i=22 / 3\left[\frac{\sin 120 \pi t-24 \pi \cos 120 \pi t+24 \pi e^{-5 t}}{1+576 \pi^{2}}\right] \tag{20mks}
\end{equation*}
$$

QUESTION THREE

(a) Solve the differential equation:
$x y d y / d x=x^{2}+y+2 x y$, given that when $x=1, y=0$
(b) A particle moves along a straight line such that its displacement x from a fixed point P is given by: $\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+13 x=\cos 2 t$

Using the differential operator D , find its displacement x at any time t, given that at

$$
\begin{equation*}
t=0, \frac{d x}{d t}=0 \tag{12mks}
\end{equation*}
$$

QUESTION FOUR

(a) Solve the following simultaneous differential equations:

$$
\begin{align*}
& d x / d t+d y / d t+2 x+y=0 \\
& d y / d t+5 x+3 y=0 \tag{10mks}
\end{align*}
$$

(b) Show that the solution of differential equation $(2 x-5 y+3) d x-(2 x+4 y-6) d y=0$ can be expressed as $(4 y-x-3)(y+2 x-3)^{2}=B$

QUESTION FIVE

The differential equation satisfied by a beam of uniformly loaded ($\mathrm{wkg} / \mathrm{m}$) with one end fixed and the second end subjected to tensile force p is given by:

Show that the elastic curve for the beam with conditions $\mathrm{y}=0, \frac{d y}{d x}=0$, at $\mathrm{x}=0$

$$
y=w / P n^{2}(1-\operatorname{Cosh} n x)+\frac{w x^{2}}{2 P}, \text { where } n^{2}=\frac{P}{E I}
$$

(use method of undetermined coefficient.)
(20mks)

