UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 322

COURSE TITLE: ORDINARY DIFFERENTIAL EQUATION II
STREAM: SESSION VI
DAY: THURSDAY
TIME: $\quad 2.00-4.00$ P.M.
DATE: $\quad 12 / 08 / 2010$

INSTRUCTIONS:

Answer Question ONE and any other TWO Questions

PLEASE TURNOVER

QUESTION ONE (30 MARKS)

a). Obtain two linearly independent solution of the differential equation $4 x y^{\prime \prime}+2 y^{\prime}+y=0$ valid near the origin for $\mathrm{x}>0$ using power series method (8 marks)
b). Write the following differential equations as a first order system:

$$
\begin{align*}
& \text { i. } y^{\prime \prime}+p y^{\prime}+q y=f(x) \\
& \text { ii. } y^{\prime \prime \prime}+p y^{\prime \prime}+q y^{\prime}+r y=f(x) \tag{4marks}
\end{align*}
$$

c). Fine two linear independent solutions to the system; $X^{\prime}=A X$ where $A=\left(\begin{array}{cc}0 & 1 \\ -2 & 3\end{array}\right)$
(6 marks)
d). Use elementary elimination calculus to solve the following system of first order
differential equation: $\begin{aligned} & x^{\prime}=3 x-4 y \\ & y^{\prime}=4 x-7 y\end{aligned}$
e). Solve the following uncoupled system find the corresponding diagonal system of the equations below and solve.

$$
\begin{align*}
& x^{\prime}=-x-3 y \tag{6marks}\\
& y^{\prime}=2 y
\end{align*}
$$

QUESTION TWO (20 MARKS)

a). Solve the system; $\mathrm{x}^{1}=\mathrm{Ax}+\mathrm{B}$ where $\mathrm{A}=\left(\begin{array}{cc}2 & 1 \\ -4 & 2\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{cc}3 & e^{2 t} \\ t & e^{2 t}\end{array}\right)$ (10 marks)
b). Find the general solution of the system

$$
\begin{align*}
& D^{2} y+(D-1) v=0 \\
& (2 D-1) y+(D-1) w=0 \tag{10marks}\\
& (D+3) y+(D-4) v+3 w=0
\end{align*}
$$

QUESTION THREE (20 MARKS)

a). a). Check that $(x(t), y(t))=\left(e^{-4 t}-3 e^{-2 t}, \quad-3 e^{-4 t}+3 e^{-2 t}\right)$ is a solution of the system of differential equations below and test for their linear independence. (8 marks)

$$
\begin{aligned}
& x^{\prime}=-x+y \\
& y^{\prime}=-3 x-5 y
\end{aligned}
$$

b). Reduce the following differential equation into a first order system:

$$
\begin{equation*}
y^{(i v)}-y=0 \tag{4marks}
\end{equation*}
$$

c). Identify and classify all singular points of:

$$
\begin{array}{cl}
\text { i. } & 4 x y^{11}+2 y^{1}+y=0 \\
\text { ii. } & 9 x(1-x) y^{11}-12 y^{1}+4 y=0 \\
\text { iii. } & \left(x-x^{2}\right) y^{11}+(1-x) y^{1}-y=0 \tag{8marks}
\end{array}
$$

QUESTION FOUR (20 MARKS)

a). Show that $f_{1}(x)=\cos x$ and $f_{2}(x)=\sin x$ are linearly independent solutions of the differential equation $y^{\prime \prime}+y=0$
c). Solve the initial value problem $\quad\left(1+y^{2}\right) d x=\left(1+x^{2}\right) d y=0 \quad$ With the initial conditions that when $x=0, y=1$.
(6 marks)
d). By using suitable transformation to reduce the equation to a separable equation, solve

$$
\begin{equation*}
(x+y) d x+(3 x+3 y-4) d y=0 \tag{8marks}
\end{equation*}
$$

QUESTION FIVE (20 MARKS)

a). Use elementary elimination calculus to solve the following system of first order differential equation: $\begin{aligned} & y^{\prime}=y \\ & y^{\prime}=-2 x+3 y\end{aligned}$
b). By use of a suitable integrating factor solve the differential equation
$\left(2 x y^{4} e^{y}+2 x y^{3}+y\right) d x+\left(x^{2} y^{4} e^{y}-x^{2} y^{2}-3 x\right) d y=0$
c). Show that $e^{a x}, x e^{a x}, x^{2} e^{a x}$ are solutions of the differential equation
$\frac{d^{3} y}{d x^{3}}-3 a \frac{d^{2} y}{d x^{2}}+3 a^{2} \frac{d y}{d x}-a^{3} y=0$ hence find the general solution of this equation.

