

UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/2010 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF SCIENCE IN EDUCATION SCIENCE

COURSE CODE: CHEM 312

COURSE TITLE: ORGANIC CHEMISTRY III

STREAM: SESSION VII

DAY: SATURDAY

TIME: 2.00 - 4.00 P.M.

DATE: 28/12/2009

INSTRUCTIONS:

ATTEMPT ALL QUESTIONS

TOTAL MARKS = 70 (each 17.5 marks)

PLEASE TURN OVER

- 1. (a) (i) Explain why aldehydes generally are more reactive under nucleophilic addition reaction than ketones.
 - (ii) Arrange the following molecules according to their decrease in reaction

 Order: isopentyl-tert-butyl ketone, propanone and ethanal. Explain the order.

 (6 mks)
 - (b) Describe with the use of equations the synthesis of each of the following from suitable organic reagents.
 - (i) m-bromobenzaldehyde starting from benzoic acid
 - (ii) n-propyl-phenyl ketone starting from benzene (5.5 mks)
 - (c) Draw the structure and provide a name for the product formed in each of the following reactions: (6 mks)

(i)
$$C_6H_5MgBr + CH_3CH_2CHO \xrightarrow{H_2O/\overset{\dagger}{H}} A$$

(ii)
$$H_3C = O + (C_6H_5)_3P = CH-CH_3 \longrightarrow B$$

(iii)
$$CI$$
 + $(CH_3)_2CuLi$ $Et_2O/-78^0C$ C

(iii)
$$CH_3$$
- CH - $C\equiv N$ + CH_3 - CH_3 + CH_3 - CH_3

- 2. (a) (i) The Ka of CICH₂COOH is 136 x 10⁻⁵ moles/litre and for CH₃COOH is 1.75 x 10⁻⁵ moles/litre, give the more acidic compound. Explain your answer. (3 mks)
 - (ii) Explain using mechanism how α alkylation of cyclopentanone can be done using suitable reagents. (2.5 mks)
 - (b) (i) Outline all steps in the synthesis of 2, 2-dimethylpropanoic acid starting from tert-butylchloride and any other reagents?
 - (ii) Outline the synthesis of benzoic acid starting from benzene and any other reagents.

(4 mks)

- (c) Complete the following equation reaction and give the name of the missing reactants/ reagent or product. (7 mks)
- (i) $(CH_3)_3$ -C-COH \longrightarrow LiAlH₄ / Ether A
- (ii) CH_2COOH $SOCl_2$ B NH_3 C
- (iii) CH_3 -CH- CH_2COOH D CH_3 -CH-CHCOOH CH_3
- (iv) $n-C_4H_9Br$ NaCN E 1. NaOH /Alcohol/Reflux 2. H_3O^+ (Hydrolysis) F G
- 3. (a) Give the structures of the following compounds:
 - (i) Isopropyl benzoate (ii) Cyclopentane carboxamine
 - (iii) phenylethanoylchloride. (iv) Benzoic-ethanoic anhydride (4 mks)
 - (b) Outline the synthesis of the following compounds using appropriate reagents;
 - (i) Phenylpropanoate (ii) benzoylchloride
 - (iii) N-methyl cyclohexane carboxamine (iv) Benzoic Ethanoic anhydride. (6.5 mks)
 - (c) Give the structures and the names of the product(s) formed in the following reactions; (7 mks)

(i)
$$CH_3$$
-C-O- CH_2CH_3 + CH_3NH_2 \longrightarrow **A** + **B**

(ii)
$$C$$
 + C + C

(iii)
$$CH_3CH_2$$
-C-NH₂ $P_2O_5 / 80^0C$ E

- 4. (a) (i) Explain why aromatic amines (Ar-NH₂) are weaker bases than aliphatic amines (R-NH₂)
 - (ii) Amines are classified into 1⁰, 2⁰, and 3⁰ amines. Which class of amines is the most basic? Explain. (5 mks)
 - (b) Outline the synthesis of the following amines using appropriate reagents;
 - (i) Isopropylamine (ii) N-ethylbenzamine starting from nitrobenzene

(5 mks)

(c) Complete the following reaction equations: (7.5mks)

(i)
$$CH_2NH_2$$

(ii)
$$(n-C_4H_9)_2$$
-NH + C_6H_5 CH₂Cl \longrightarrow B

(iii)
$$NH_2 Na_2NO_2/HCl$$
 $C H_2O/Cu_2O, Cu^2$