

SUPPLEMENTARY/SPECIAL EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: PHYS 210

COURSE TITLE: OSCILLATIONS AND WAVES
STREAM: Y2S1

DAY:
MONDAY

TIME:
2.00-4.00 P.M

DATE:
17/03/2009
INSTRUCTIONS
Answer QUESTION 1 and ANY OTHER TWO

QUESTION 1 (40 MARKS)

a) Define the terms i) beat
ii) Resonance
(1 mark)
i) Resona
(1 mark)
b) An ambulance with a siren of 900 Hz sound is moving at $20 \mathrm{~m} / \mathrm{s}$. What frequency is heard by a stationary observer when the car is;
i) Receding from
ii) Approaching the observer?
(Take velocity of sound to be $340 \mathrm{~ms}^{-1}$)
c) i) What do you understand by the term simple harmonic motion?
(1 mark)
ii) Show that the equation of a simple harmonic motion is $m x+s x=0$ where s is spring constant.
(3 marks)
d) Give an expression of a Fourier series.
(1 mark)
e) Define the term normal mode.
f) i) Using the equation of displacement as $x(t)=x_{m} \sin (\omega t-\Phi)$, show that the force law of SHM is given by $\mathrm{F}=-\mathrm{kx}$ where $\mathrm{k}=\mathrm{m} \omega^{2}$ and k is the spring constant. (3 marks)
ii) If amplitude is 4 cm at 2 seconds and phase angle is 90°, determine the displacement of a system when it has angular frequency of $50 \mathrm{rads} / \mathrm{s}$.
(3 marks)
g) A string vibrating at a frequency of 800 Hz has five nodes including the two at the fixed ends. If the string is vibrating at $420 \mathrm{~ms}^{-1}$, find the length of the string. (3 marks)
h) Give two factors that affect wave velocity of a transverse wave.
i) Give the difference between longitudinal waves and transverse waves.
j) Given displacement equation of a SHM as $\mathrm{y}=\mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx})$, show that linear acceleration $\ddot{x}=-\omega^{2} y$. Hence find the displacement for a body moving at $5 \mathrm{~ms}^{-1}$ and angular velocity of $3 \pi \mathrm{rad} / \mathrm{s}$.
k) Show that the solution to a wave equation whose displacement is

$$
\begin{align*}
& \mathrm{y}(\mathrm{x}, \mathrm{t})=\mathrm{f}(\mathrm{ct}+\mathrm{x}) \text { is } \\
& \frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}} \tag{4marks}
\end{align*}
$$

1) A linear density of a string is $1.6 \times 10^{-4} \mathrm{~kg} / \mathrm{m}$. A transverse wave on the string is described by the equation $y=(0.021 \mathrm{~m}) \operatorname{Sin}\left[\left(2.0 \mathrm{~m}^{-1}\right) \mathrm{x}+\left(30 \mathrm{~s}^{-1}\right) \mathrm{t}\right]$. What is;
i) the wave speed
ii) The tension in the string?
m) Give a general solution of displacement of a coupled oscillation of n bodies.
(1 mark)
n) Define damping as used in simple harmonic motion (SHM).

QUESTION TWO (15 MARKS)

a) In a forced oscillator the equation of motion is given as

$$
\mathrm{m} \ddot{x}+r \dot{x}+s x=F_{o} \operatorname{Cos} \omega t
$$

Show that

$$
\mathrm{x}=-\frac{i F_{o} e^{i(\omega t-\phi)}}{\omega Z_{m}}
$$

Also show that its velocity is $\mathrm{V}=\frac{F_{o} e^{i(\omega t-\phi)}}{Z_{m}}$
b) A nylon guitar string has a linear density of $7.2 \mathrm{~g} / \mathrm{m}$ and is under a tension of 150 N . The fixed supports are 90 cm apart. The string is oscillating in the standing wave pattern shown in fig 1 below:

Fig 1
Calculate;
i) Speed
ii) Wavelength (2 marks)
iii) Frequency of the traveling waves whose superposition gives this standing wave.
c) A string vibrates according to the equation $\mathrm{y}=0.5 \operatorname{Sin} \frac{\pi}{3} x \operatorname{Cos} 40 \pi t$

Find points on x where there are i) nodes ii) antinodes

QUESTION THREE (15 MARKS)

a) Figure 2 below shows a string in a transverse velocity.

Fig 2
Given that the displacement $y=A e^{i(\omega t-k x)}$ and that force $\mathrm{F}_{\mathrm{o}} \mathrm{e}^{\mathrm{i} \omega t}$, show that at $\mathrm{x}=0$ the characteristic impedence of the string Z is given by

$$
\mathrm{Z}=\frac{T}{c} \text { where } \mathrm{T} \text { is the tension and } \mathrm{C} \text { is the velocity. }
$$

b) Calculate the linear density of a string oscillating at $10 \mathrm{~ms}^{-1}$ and has characteristic impedence of $2 \mathrm{kgs}^{-1}$.
c) In a simple harmonic motion $\ddot{x}+\omega^{2} x=0$, find the solution for $\mathrm{x}=\mathrm{a} e^{i \omega t} e^{i \phi}$ where \mathbf{a} is a constant length, and ϕ is also a constant.
d) Define a wave.
e) Given that displacement of a wave is $y=A \sin \omega t$, prove that it is also

$$
y=A \operatorname{Sin}(\omega t-k x)
$$

Where ω is the angular velocity and k is the wave number.

QUESTION FOUR (15 MARKS)

a) The equation below is a matrix form of a coupled oscillation.

$$
\left[\begin{array}{c}
\ddot{x}_{1} \\
. \\
x_{2}
\end{array}\right]=-\frac{k}{m}\left[\begin{array}{cc}
3 & -2 \\
-2 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

i) Give the original simultaneous equations to this matrix equation. (2 marks)
ii) Solve the equation to obtain the Eigenvalues of the system. (3 marks)
iii) Solve for the corresponding vectors of b) above. (3 marks)
iv) Interpret the meaning of the Eigenvalues.
b) The equation of a transverse wave on a string is

$$
y=(2.0 \mathrm{~mm}) \operatorname{Sin}\left[\left(20 \mathrm{~m}^{-1}\right) \mathrm{x}-\left(600 \mathrm{~s}^{-1}\right) \mathrm{t}\right]
$$

The tension in the string is 15 N .
i) What is the wave speed?
ii) Find the linear density of this string in grams per meter.
c) Find the period of a simple pendulum of length 1.5 m carrying a 10 g bob.

QUESTION FIVE (15 MARKS)

a) The diagram of fig 3 is an inductor, resistor and a condenser connected in series.

Fig 3
Given that current is $\mathrm{I}=\mathrm{I}=\mathrm{I}_{0} \mathrm{e}^{\mathrm{i} \omega \mathrm{t}}$,
i) Find the voltage across inductor V_{L} explaining the relationship between current and voltage
(2 marks)
ii) Show that the reactances can be expressed as $i(\omega L-1 / \omega C)$.
iii) Given that $V=V_{o} e^{i \omega t}$ and $Z=Z_{e} e^{i \Phi \Phi}$, show that

$$
I=\frac{V_{o}}{Z_{e}} e^{i(\omega t-\Phi)}
$$

b) At a velocity of $16 \mathrm{~ms}^{-1}$, an impedence of $9 \mathrm{kgs}^{-1}$ is experienced on a string when a force of 45 N is applied on it. Find the phase shift after 3 seconds, if the string is oscillating at $60 \mathrm{rad} / \mathrm{s}$.
c) A stretched string has linear density $\mu=5.0 \mathrm{gcm}^{-1}$ and a tension of 10 N . A sinusoidal wave on this string has amplitude of 0.12 mm and frequency of 100 Hz and is traveling in the negative direction of x . Write an equation for this wave. Show your working.

