

FOR THE DEGREE OF BACHELOR OF EDUCATION

SCIENCE

COURSE CODE: PHYS 210

COURSE TITLE: OSCILLATIONS AND WAVES

STREAM:
 Y 2 S1

DAY: TUESDAY
TIME:
2.00 - 4.00 P.M

DATE:
30/11/2010
INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions. Question ONE carries 30marks while each of the other Two Questions carry 20marks.

QUESTION 1 (30 marks)

(a) Define the following terms
(2marks)
i). Periodic motions
ii). Sinusoidal vibrations
(b) Consider the general equation of a simple harmonic motion defined by
$X=A \operatorname{Sin}(\varpi t+\Psi)$
i). Sketch a graph representing this motion
(2marks)
ii). Find the displacement $\left(X_{0}\right)$ and velocity $\left(V_{0}\right)$ expressions of this motion at $t=0$
(4marks)
iii). Hence show that

$$
A=\left[X_{0}^{2}+\left(\frac{V_{0}}{\bar{\varpi}}\right)^{2}\right]^{\frac{1}{2}}
$$

(4marks)
(c) Consider the vector Z defined by the equation $Z=Z_{1} Z_{2} \quad$ where $Z_{1}=a+j b$ and $Z_{2}=c+j d$. Show that the length Z is the product of the length of Z_{1} and
(d) State two quantities of a simple harmonic oscillator
(2marks)
(e) Define the following terms
i). Stress
ii). Strain
(f) A mass of 0.5 Kg is suspended on a steel wire of length 50 cm and diameter 1 mm . Given that for steel Young modulus $Y=2.0 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$, determine
i). The extension produced on the wire
ii). The period of oscillation of the system
(g) Differentiate between the following and state two examples of each
i). Transverse waves
ii). Longitudinal waves
(h) State one difference between standing waves and progressive waves
(1mark)

QUESTION 2 (20 marks)

a) Consider the given wave equation

$$
y=4 \operatorname{Sin} 200 \pi\left(t-\frac{x}{3000}\right)
$$

Determine for the wave
i). The direction (1mark)
ii). The amplitude
iii). The period
(2marks)
iv). The wavelength
v). The speed
b) Given the standing wave equation

$$
y=4 \operatorname{Cos} \frac{\pi}{15} x \operatorname{Sin} \frac{2 \pi}{0.01} t
$$

Determine

i). The amplitude of the progressive wave generating the standing wave(2marks)
ii). The wavelength of the progressive wave
(2marks)
iii). The angular speed of the progressive wave
iv). The distance x for the first antinode
v). The period of the progressive wave
c) State two difference between standing waves and progressive waves

QUESTION 3 (20 marks)

a) Define the following terms
i). Particle velocity
ii). Phase velocity
iii). Group velocity
b) Show that group velocity v_{g} is given by

$$
v_{g}=v-\lambda \frac{d v}{d \lambda} ; \text { Where } v \text { is the phase velocity }
$$

c) Obtain the Fourier series of the given function
$x(t)=e^{j 200 t}$
d) State two conditions for two source interference
(2marks)
e) Light of wavelength 500 nm is incident on two small parallel slits separated by 1.0 mm . After passing through the slits, the light is focused onto a screen 1.5 m away from the slits, calculate;
i). The angle for the first fringe formation
(3marks)
ii). The observed fringe spacing on the screen
(3marks)
f) Find the beat period of beats produced when sound notes of frequencies 438 Hz and 443 Hz are sounded together.

QUESTION 4 (20 marks)

a) Define the following terms
(3marks)
i). Normal mode of vibration
ii). Degree of freedom
iii). Doppler effect
b) The frequency of a car horn is measured by a stationary observer as 200 Hz , when the car is at rest. Determine the frequency that will be heard if the car is approaching the observer at a speed of $30 \mathrm{~m} / \mathrm{s}$. Take speed of sound in air to be $330 \mathrm{~m} / \mathrm{s}$ (3marks)
c) Consider an LC with current (i) flowing in it. Show that at any time (t), the charge (q) on any plate of the capacitor can be expressed in Fourier series defined by
$q=q_{0} \operatorname{Sin}\left(\frac{t}{\tau}+\alpha\right)$
Where $\tau=\sqrt{L C}, q=q_{0}$ at $t=\tau$ and $\alpha=$ phase constant
(10marks)
d) A string of length 1 m , mass 25 g and fixed at both ends is stretched by tension of 10 N . If the string is made to vibrate with fundamental frequency of 100 Hz , calculate;
i). The wavelength of the second harmonic
(2marks)
ii). The speed of the wave on the string
(2marks)

QUESTION 5 (20 marks)

a) i) Differentiate between open and closed pipe
(2marks)
ii) An organ pipe open at one end is 1.5 m long. Given that the speed of sound is $300 \mathrm{~m} / \mathrm{s}$ calculate the second harmonic
I) The frequency
(3marks)
II) The wavelength
(2marks)
c) i) Define resonance as used with simple harmonic oscillators
(1mark)
ii) Consider an undamped harmonic oscillator of mass (m), spring constant (k) with harmonic forcing. Show that for this system, the amplitude is extremely large at resonance
(6marks)
d) i) Differentiate between odd and even functions
(2marks)
ii) The motion of the spot on a cathode ray oscilloscope screen when alternating voltages are applied simultaneously on the X and Y plates can be described by
$X=a \sin \varpi t$
$Y=b \sin (\varpi t+\alpha)$

Show that the motion of the spot degenerates into a line when the voltages are in phase with each other

