

UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/2010 ACADEMIC YEAR

 FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCECOURSE CODE: MATH 410
COURSE TITLE: PARTIAL DIFFERENTIAL EQUATIONS
STREAM: SESSION VII

DAY: MONDAY
TIME:
2.00-4.00 P.M.

DATE:
29/11/2010

INSTRUCTIONS:

PLEASE TURNOVER

QUESTION ONE (30 MARKS)

a) Calculate the integral surface of the quasi - linear partial differential equation $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=z\left(x^{2}-y^{2}\right)$ which contains the straight line $x+y=0, z=1$
b) State whether the differential equation is linear, its order and degree

$$
\begin{equation*}
r+3 s+t=0 \text { where } r=\frac{\partial^{2} z}{\partial x^{2}}, \mathrm{~s}=\frac{\partial^{2} z}{\partial x \partial y} \text { and } t=\frac{\partial^{2} z}{\partial y^{2}} \tag{3marks}
\end{equation*}
$$

c) Show that the partial differential equation $x p-y q=x$, and $x^{2} p+q=x z$ are compatible and find their solution.
d) Obtain the first order partial differential equation from the relation $z=a x^{6} y^{3}+b x^{4} y^{2}+c x^{2} y+d$.
e) Find a complete and singular integral of $2 x z-p x^{2}-2 q x y+p q=0$
(8 marks)

QUESTION TWO (20 MARKS)

a) Calculate the integral surface of the quasi - linear partial differential equation

$$
\begin{equation*}
x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=z\left(x^{2}-y^{2}\right) \tag{8marks}
\end{equation*}
$$

b) Classify each of the following partial differential equations as either parabolic, elliptic or hyperbolic
i). $u_{x x}-x^{2} y u_{y y}=0, \quad(y>0)$,
ii). $4 u_{x x}+12 u_{x y}+9 u_{y y}-2 u_{x}+u=0$
iii). $2 u_{x x}+2 u_{y y}-15 u_{z z}+8 u_{x y}-12 u_{x y}-12 u_{y z}=0$
(6 marks)
c) Verify that the following equation is integrable and determine their primitives: $\quad z y d x-z x d y-y^{2} d z=0$

QUESTION THREE (20 MARKS)

a) Find the fundamental solution of the Laplace's equation

$$
\begin{equation*}
\Delta u=\frac{d^{2} u}{d r^{2}}+\frac{(n-1)}{r} \frac{d u}{d r}=0 \tag{8marks}
\end{equation*}
$$

b) Solve $\frac{d x}{6(y-z)}=\frac{2 d y}{3(z-x)}=\frac{3 d z}{2(x-y)}$
(6 marks)
c) Solve the Lagrange's equation: $\left(z^{2}-2 y z-y^{2}\right) p+(x y+z x) q=x y-z x$
(6 marks)

QUESTION FOUR (20 MARKS)

a) Use Charpits methods to find the complete integral of the partial differential equations $p^{2} x+q^{2} y=z$
(6 marks)
b) Determine the constant k such that the equation
$\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right) d x+\left(\frac{k x+1}{y^{3}}\right) d y=0$ is exact.
(4 marks)
c) Obtain the partial differential equation of the following equations where \mathbf{a}, \mathbf{b} and \mathbf{c} are constants and ϕ is arbitrary function to be eliminated.

$$
\begin{align*}
& \text { (i) } z=a x+b y+c x y \\
& \text { (ii) } y=f(x-a t)+\phi(x+a t) \tag{10marks}
\end{align*}
$$

QUESTION FIVE (20 MARKS)

a) Calculate the equation of the tangent plane at the point $(2,1,-2)$ to the surface

$$
\begin{equation*}
x^{2}+2 y^{2}+2 z^{2}=14 \tag{7marks}
\end{equation*}
$$

b) Find the surface orthogonal to the family of surfaces $z=\operatorname{cxy}\left(x^{2}+y^{2}\right)$ which passes through the curve $x^{2}-y^{2}=a^{2}, z=0$.
c) The acceleration of a particle moving in straight line is the negative of its velocity. If it starts from the origin with a velocity of 1, find its position at the end of two units of time.
(5 marks)

