

UNIVERSITY

UNIVERSITY EXAMINATIONS 2008/2009 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 410

COURSE TITLE: PARTIAL DIFFERENTIAL EQUATIONS 1 STREAM: SESSION VII \& VIII

DAY: MONDAY
TIME: $\quad 2.00$ - 4.00 P.M.
DATE: $\quad 10 / 08 / 2009$

INSTRUCTIONS:
ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

PLEASE TURN OVER

OUESTION ONE (30 MARKS)

a. Find the equation of the tangent plane to the surface $z=2 x^{2}+y^{2}$ at the point $(1,1,3)$
(4 marks)
b. Find the orthogonal trajectories on the surface $x^{2}+y^{2}+2 f y z+d=0$ of its curves of intersection with the planes parallel to the plane $\mathrm{z}=0$.
(5 marks)
c. Find the integral surfaces of the following differential equation:

$$
\begin{equation*}
\frac{\mathrm{dx}}{x(3 y-4 z)}=\frac{d y}{y(4 z-2 x)}=\frac{d z}{z(2 x-3 y)} \tag{5marks}
\end{equation*}
$$

d. Determine whether the following differential equation is integrable and hence find the primitive:

$$
\begin{equation*}
y d x-(x+z) d y+y d z=0 \tag{5marks}
\end{equation*}
$$

e. Form a first order PDEs by eliminating the arbitrary constants:
(i) $\mathrm{Z}=\mathrm{f}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)$
(ii) $\mathrm{ax}^{2}+\mathrm{by}{ }^{2}+\mathrm{z}^{2}=1$
f. Show that the following equations are compatible and hence solve:
$(x p-y q)=x, x^{2} p+q=x z$

QUESTION TWO (20 MARKS)

a. Find the general solution $\mathrm{u}(\mathrm{x}, \mathrm{y})$ of $u_{x x}-u=0$ which satisfies the auxiliary conditions $u(0, y)=f(y), u_{x}(0, y)=g(y)$
b.

Find the equation of the tangent plane to:

$$
\begin{equation*}
\mathrm{xyz}=\mathrm{a}^{3} \text { at the point }\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right) \tag{4marks}
\end{equation*}
$$

c. Find the orthogonal trajectories on the surface $y^{2}=2 z$ which is cut by the system of planes $\mathrm{x}+\mathrm{z}=\mathrm{c}$ where c is a constant.
d. Show that $u=f\left(x^{2}-y^{2}\right)$ is a solution of $\mathrm{y} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+x \frac{\partial u}{\partial y}=0$
(4 marks)
e. Define a compatible system of first order equation.
(2 marks)

QUESTION THREE (20 MARKS)

a. Find the integral surfaces of the following differential equations:
(i) $\frac{\mathrm{dx}}{c y-b z}=\frac{d y}{a z-c x}=\frac{d z}{b x-a y}$
(ii) $\frac{\mathrm{dx}}{y^{3} x-2 x^{4}}=\frac{d y}{2 y^{4}-x^{3} y}=\frac{d z}{2 z\left(x^{3}-y^{3}\right)}$
(iii) $\frac{\mathrm{dx}}{x\left(4 y^{2}-z^{2}\right)}=\frac{-d y}{y\left(z^{2}+9 x^{2}\right)}=\frac{d z}{z\left(9 x^{2}+4 y^{2}\right)}$
b. Use separation of variables method to solve the following Pfaffian differential equations:

$$
\begin{equation*}
y(1-x) d x+x^{2}(1-y) d y=0 \tag{5marks}
\end{equation*}
$$

QUESTION FOUR (20 MARKS)

a. Verify that the following differential equations are integrable, homogeneous and hence find the primitives:
(i) $y z(y+z) d x+x z(x+z) d y+x y(x+y) d z=0$
(ii) $(2 x+y) d y-(x-2 y) d x=0$
b. Determine whether the following differential equations are integrable and hence find their primitives:
(i) $y d x+x d y+2 z d z=0$
(4 marks)
(ii) $2 \mathrm{xz} \mathrm{dx}+\mathrm{zdy}-\mathrm{dz}=0$

QUESTION FIVE (20 MARKS)

a. Form PDEs by eliminating the arbitrary constants in following equations:
(i) $\mathrm{x}^{2}+\mathrm{y}^{2}=(\mathrm{z}-\mathrm{c})^{2} \tan ^{2} p$
(ii) $z=x+y+f(x y)$
b. Use Cauchy's method to find the solutions of the following PDE satisfying the given conditions:

$$
\mathrm{pq}=\mathrm{z}, \mathrm{x}=0, \mathrm{y}^{2}=\mathrm{z}
$$

c. Use Charpit's method to solve the following first order PDE:

$$
\begin{equation*}
\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right) \mathrm{y}=\mathrm{qz} \tag{5marks}
\end{equation*}
$$

