

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

COURSE CODE: MATH 410

COURSE TITLE: PARTAIL DIFFERENTIAL EQUATIONS
STREAM:
DAY:
FRIDAY
TIME:
9.00-11.00 A.M.

DATE:
06/08/2010

INSTRUCTIONS:
> Answer Question ONE and any other TWO questions

PLEASE TURNOVER

QUESTION ONE: 30 MARKS

a) Given that $z=x^{3} y+y^{2} x$, Find $d z$.
b) Show that the equation $x=2 u, y=v$ and $z=u^{2}+v^{2}$ represent a surface and find its equation in constraint forms.
c) Find the equations of the tangent plane and the normal line to the surface $z=\sin x+\cos y$ at a point $\left(\pi, \frac{\pi}{2}, 1\right)$.
d) Solve the equation $\frac{d x}{6(y-z)}=\frac{2 d y}{3(z-x)}=\frac{3 d z}{2(x-y)}$
e) Determine b so that the differential equation $(3 x-5 y+7) d x+(b x+6 y+10) d y$ will be exact and solve it.
(5 Marks)
f) Form a quasi-linear partial differential equation of order one whose general solution is given by
$Q\left(x^{2}-y^{2}, y^{2}+2 z^{2}\right)=0$.
g) Solve the non-linear partial differential equation $p^{2}+q^{2}=1$.

QUESTION TWO: 20 MARKS

a) The surfaces $3 x^{2 y}+y^{2} z+z^{2}=0$ and $2 x z-x^{2} y=3$ intersect in a space curve. Find the equation of the tangent line to this curve at the point $(-1,2)$.
(7 Marks)
b) Find the integral surface of the equation $x(3 y-4 z) p+y(4 z-2 x) q=z(2 x-3 y)$ which passes through the line $\quad y=2 x, z=1$.
(13 Marks)

QUESTION THREE: 20 MARKS

a) Find the integrating factor of the differential equation: $y d x+\left(y^{2}-x\right) d y=0$ and hence obtain its general solution.
(7 Marks)
b) Solve the following homogeneous equation :

$$
\begin{equation*}
\left(2 y z+3 x y+4 x^{2}\right) d x+\left(x z+x^{2}\right) d y+x y d z=0 \tag{10Marks}
\end{equation*}
$$

c) Use separation of variables method to solve the differential equation, $e^{x^{3}-y^{2}}+\frac{y}{x^{2}} \frac{d y}{d x}=0$.
(3 Marks)

QUESTION FOUR: 20 MARKS

a) Given that $p_{o}\left(x_{0}, y_{0}, z_{0}\right)$ is a point on a curved surface whose equation is $f(x, y, z)=0$. Derive the equation of the tangent plane and the normal line at the point $p_{o}\left(x_{0}, y_{0}, z_{0}\right)$.
b) Find the equation of the tangent plane and the normal line to the surface $x=u, y=\frac{v}{2}, z=u v$ at the point $(-2,1,2)$
(8 Marks)
c) Determine the constant K such that the equation $\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right) d x+\left(\frac{k x+1}{y^{3}}\right)=0$ is exact.(2 Marks)

QUESTION FIVE: 20 MARKS

a) Show that the partial differential equations $x p=y q$ and $z(x p+y q)=2 x y$ are compatible.
b) Obtain a first order partial differential equation from the relation $z=a x^{6} y^{3}+b x^{4} y^{2}+c x^{2} y+d$.
c) Find the general solution of the equation $y^{2} z p+z^{2} x q=-x y^{2}$

