

# UNIVERSTY EXAMINATIONS 

2008/2009 ACADEMIC YEAR
FOR THE DEGREE OF BACHEIOR OF ECONOMICS \& MATHEMATICS

## COURSE CODE: MATH 410

COURSE TIILE: PARIIAL DIFERENTIALEQUATIONS
STREAM: Y4SI
DAY:
MONDAY
TIME:
11.00-1.00 P.M.

DATE:
08/12/2008

INSIRUCTIONS TO CANDIDATES:
ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

## PLEASE TURN OVER

## QUESIION ONE (30 MARKS)

(a). Find the equation of the tangent plane to the surface $3 x y z-z^{3}=a^{3}$ at ( $0, a,-a$ ).
(4 marks)
(b). Venify that the following equation is integrable and detemine their primitives: $z y d x-z x d y-y^{2} d z=0$
(c ). Find the integral curves to the equations: $\frac{d x}{6(y-z)}=\frac{2 d y}{3(z-x)}=\frac{3 d z}{2(x-y)}$.
(5 marks)
(d). Form a first order PDE from the equation: $x^{2}+y^{2}+(z-c)^{2}=a^{2}$
(5 marks)
(e). Use J acobi's method to solve the first order PDE: $p+q=p q$
(5 marks)
(f). State what is a first order PDE.
(2 marks)
(g). Find the orthogonal trajectories on the surface $y^{2}=2 z$ which is cut by the system of planes $x+z=c$ where $c$ is a constant.

## QUESIION TWO (20 MARKS)

(a). What is PDE?
(2 marks)
(b). Find the orthogonal trajectories on the surface $(x+y) z=1$ which is cut by the planes $x-y+z=k$ where $k$ is a constant.
(6 marks)
(c). Find the integral curves of the following simultaneous differential equations:
(i) $\frac{\mathrm{dx}}{\mathrm{xz}-\mathrm{y}}=\frac{d y}{y z-x}=\frac{d z}{1-z^{2}}$
(ii) $\frac{\mathrm{dx}}{\mathrm{cy}-\mathrm{bz}}=\frac{d y}{a z-c x}=\frac{d z}{b x-a y}$

## QUESTION THREE (20 MARKS)

(a). Use Cauchy's method to find the solutions of the P.D.E $\mathrm{xp}-\mathrm{yq}+\mathrm{z}=x, \quad \mathrm{z}=x^{2} \quad$ when $\mathrm{y}=\mathrm{x}$.
(8 marks)
(b). Find a complete integral of the equation $p+q=p q z$
(5 marks)
(c ). Use Charpit's method to find the complete integral of the equation

$$
\begin{equation*}
p^{2} z^{2}=1-q^{2} . \tag{7marks}
\end{equation*}
$$

## QUESIION FOUR (20 MARKS)

(a). Explain what you understand by the term "compatible equations" in PDE.

Hence show that the equations $\mathrm{xp}-\mathrm{yq}=\mathrm{x}, x^{2} p+q=x z$ are compatible and find their solution.
(b). Solve the Lagrange's equation: $\left(z^{2}-2 y z-y^{2}\right) p+(x y+z x) q=x y-z x$
(6 marks)
(c). Use separation of equations method to solve the following equation:

$$
p-x^{2}=q+y^{2}
$$

(5 marks)

## QUESIION RVE (20 MARKS)

(a). Verify that the following equation is integrable, homogeneous and hence find the primitive: $\left(2 y z+3 x y+4 x^{2}\right) d x+\left(x z+x^{2}\right) d y+x y d z=0$
(8 marks)
(b). Proof that the following differential equation is integrable and hence find the Primitive $\left(y^{2}+y z\right) d x+\left(x z+z^{2}\right) d y+\left(y^{2}-x y\right) d z=0$ (8 marks)
(c ). Find the direction ratios to the curves: $a x^{2}+b y^{2}+c z^{2}=1, x+y+z=1$ (4 marks)

