KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS
 2009/2010 ACADEMIC YEAR
 FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 410
COURSE TITLE: PARTIAL DIFFERENTIAL EQUATIONS
STREAM: SESSION VII
DAY: WEDNESDAY
TIME:
2.00-4.00 P.M.

DATE:
11/08/2010

INSTRUCTIONS:

Answer Question ONE and any other TWO of the remaining.

PLEASE TURNOVER

QUESTION ONE (30 MARKS)

a). State what is a first order PDE.
b). Verify that the following equation is integrable and determine their primitives: $\quad z y d x-z x d y-y^{2} d z=0$
c). The acceleration of a particle moving in straight line is the negative of its velocity.

If it starts from the origin with a velocity of 1 , find its position at the end of two units of time.
(5 marks)
d). Calculate the equation of the tangent plane at the point $(2,1,-2)$ to the surface

$$
\begin{equation*}
x^{2}+2 y^{2}+2 z^{2}=14 \tag{5marks}
\end{equation*}
$$

e). Use Charpits methods to find the complete integral of the partial differential equations

$$
\begin{equation*}
p^{2} x+q^{2} y=z \tag{8marks}
\end{equation*}
$$

Determine the value of b so that the differential equation

$$
(3 x-5 y+7) d x+(b x+6 y+9) d y=0
$$

will be exact and solve it.
(6 marks)

QUESTION TWO (20 MARKS)

a). Find the integrating factor of the following differential equation and solve it.

$$
\begin{equation*}
2 x^{2} y d x+\left(x^{3}+2 x y\right) d y=0 \tag{6marks}
\end{equation*}
$$

b). Find the equation of the tangent plane to the surface

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=18 \text { at the point }(3,3,0) \tag{6marks}
\end{equation*}
$$

c). Calculate the integral surface of the quasi - linear partial differential equation
$x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=z\left(x^{2}-y^{2}\right)$ which contains the straight line $x+y=0, z=1$
(8 marks)

QUESTION THREE (20 MKS)

a). Use Charpits methods to find the complete integral of the partial differential equations

$$
\begin{equation*}
p x+q y=p q \tag{8marks}
\end{equation*}
$$

b). Obtain the partial differential equation of the following equations where \mathbf{a}, \mathbf{b} and \mathbf{c} are constants and ϕ is arbitrary function to be eliminated.

$$
\begin{equation*}
\text { (i) } z=a x+b y+c x y \tag{4marks}
\end{equation*}
$$

$$
\text { (ii) } y=f(x-a t)+\phi(x+a t)
$$

c). Solve $(x+y) p+(z+x) q=x+y$

QUESTION FOUR (20 MKS)

a). Calculate the integral surface of the quasi - linear partial differential equation

$$
x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=z\left(x^{2}-y^{2}\right)
$$

which contains the straight line $x+y=0, z=1$
b). Classify the differential equations as either parabolic, elliptic or hyperbolic
i). $u_{x x}+y u_{y y}=0$
ii). $u_{x x}-3 u_{x y}+2 u_{y y}=0$
c). Find a complete and singular integral of $2 x z-p x^{2}-2 q x y+p q=0$

QUESTION FIVE (20 MARKS)

a). Verify that the following equation is integrable, homogeneous and hence find the primitive: $\left(2 y z+3 x y+4 x^{2}\right) d x+\left(x z+x^{2}\right) d y+x y d z=0$
b). Solve by separation of variables the differential equation $\left(x^{2}+1\right)\left(y^{2}-1\right) d x+x y d y=0$
(6 marks)
c). State whether the differential equation is linear, its order and degree $r+3 s+t=0$ where $r=\frac{\partial^{2} z}{\partial x^{2}}, \mathrm{~s}=\frac{\partial^{2} z}{\partial x \partial y}$ and $t=\frac{\partial^{2} z}{\partial y^{2}}$

